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MAMMA is a FORTRAN90 code designed to solve a conservative model for steady magma

ascent in a volcanic conduit, described as a compressible multicomponent two-phase flow.

It is an open-source code (https://github.com/demichie/MAMMA) and a simplified, user-

friendly version is available in vhub (https://vhub.org/tools/mamma/). In this document,

we describe the part of the model related to the user-friendly version of MAMMA.

1 System of equations

The system of conservation equations is derived from the theory of thermodynamically com-

patible systems [1], considering the effects of the main processes that magmas experience

during ascent, such as crystallization, rheological changes, fragmentation, physical interac-

tion with conduit walls, vertical outgassing and lateral degassing. The system is described as

a mixture of two phases (i = 1, 2), each one characterized by a volume fraction (αi), density

(ρi), velocity (ui) and specific entropy (si). Below the fragmentation level, phase 1 is a mixture

of crystals, dissolved volatiles and melt (continuous phase); while phase 2 is composed by the

exsolved gas bubbles (dispersed phase). Above magma fragmentation, phase 1 is constituted

by magma fragments (dispersed phase) and phase 2 is the exsolved gas mixture (continu-

ous phase). Magma fragmentation occurs when the exsolved gas volume fraction reaches a

critical value (αg = α2 = αcr) [2] (Fig. 1).

The components of the system are characterized by an equation of state; while pressure

(pi) and temperature (Ti) of both phases are derived from the internal energy (ei):

pi = ρ2i
∂ei
∂ρi

(1)
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Figure 1: Schematic illustration of volcanic conduits.

Ti =
∂ei
∂si

(2)

The model includes the conservation laws of total mass (Eq. 3), momentum (Eq. 4) and

energy (Eq. 5).

∂

∂z

(
ρuR2

eq

)
= −2Jlatfε1Req (3)

∂

∂z

((
α1(ρ1u

2
1 + p1) + α2(ρ2u

2
2 + p2)

)
R2
eq

)
= −ρgR2

eq − 2Jlatfε1u2Req −
8χ1µu1
f2ε2

− χ2λwρ2u
2
2Req

4f2ε2

(4)
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+
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2
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+ α2ρ2u2

(
e2 +

p2
ρ2

+
u22
2

)
− ρx1x2(u1 − u2)(s1 − s2)T

)
R2
eq

)
= −ρguR2

eq −
8χ1µu

2
1

f2ε2

− χ2λwρ2u
3
2Req

4f2ε2
− 2Jlatfε1

(
cgT +

u22
2

)
Req

(5)

where z is the vertical coordinate, ρ is mixture density, u is mixture velocity, Req is the equiv-

alent conduit radius (Eq. 6), Jlat is the lateral gas flux through conduit walls, fε1 is a conduit

eccentricity-derived factor (Eq. 7), g is the acceleration of gravity, χi controls the inclusion of

wall friction (1 or 0, function of the continuous phase index), µ is mixture viscosity, fε2 is an

additional conduit eccentricity-derived factor (Eq. 8), λw is a drag coefficient [3], xi is the mass

fraction of phase i, T is mixture temperature and cg is the specific heat capacity of exsolved

gas.

Req =
√
Ra ·Rb (6)

fε1 =
3(1 +

√
1− ε2)−

√
(3 +

√
1− ε2) · (1 + 3

√
1− ε2)

2 · 4
√

1− ε2
(7)

fε2 =

√
2
√

1− ε2
2− ε2

(8)

where Ra is the maximum semi-axis, Rb is the minimum semi-axis and ε is conduit eccentric-

ity (Eq. 9).

ε =

√
1−

R2
b

R2
a

(9)

Phase 1 volume fraction is governed by the following equation:

∂

∂z

(
ρuα1R

2
eq

)
= − 1

τ (p)
(p2 − p1)R2

eq (10)

where τ (p) is the relaxation parameter which controls the pressure difference between both

phases ([m2/s]).

Furthermore, the model includes an additional equation for controlling the relative veloc-

ity between the phases:
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∂

∂z

((
u21
2
− u22

2
+ e1 − e2 +

p1
ρ1
− p2
ρ2
− (s1 − s2)T

)
R2
eq

)
= − 8χ1µu1

α1ρ1f2ε2
+
χ2λwu

2
2Req

4α2f2ε2
− ρ

ρ1ρ2
δf (u1 − u2)R2

eq

(11)

where δf is the drag factor ([kg/m3s]).

Finally, the system of equations presents the mass conservation laws of crystals (Eq. 12),

dissolved water (Eq. 13) and exsolved gas (Eq. 14).

∂

∂z

(
α1ρcαcu1R

2
eq

)
= − 1

τ (c)
α1ρc(αc − αeqc )R2

eq (12)

∂

∂z

(
xdα1 (ρ1 − αcρc)u1R2

eq

)
= −

(xd − xeqd )

τ (d)
α1 (ρ1 − αcρc)R2

eq
(13)

∂

∂z

(
αgρgu2R

2
eq

)
= −2Jlatfε1Req +

(xd − xeqd )

τ (d)
α1 (ρ1 − αcρc)R2

eq (14)

where ρc is density of crystals, αc is the volume fraction of crystals in phase 1, τ (c) is the

crystallization relaxation parameter ([s]), αeqc is the equilibrium value of αc, xd is the mass

fraction of dissolved water in the phase composed by melt and dissolved gas, τ (d) is the

relaxation parameter which controls the exsolution rate of water ([s]), xeqd is the equilibrium

value of xd, while αg and ρg are volume fraction and density of exsolved gas.

For the model solution, it employs a numerical shooting technique: for a given inlet pres-

sure, the model adjusts the inlet flow rate until the appropriate boundary condition (choked

flow or atmospheric pressure) is reached. For the spatial integration of the equations, a well-

established PI step-size control technique is adopted, with the relaxation terms treated im-

plicitly to guarantee the stability of the numerical scheme.

2 Constitutive equations

In order to offer the possibility of describing the behaviour of a wide range of magma com-

positions and volcanic phenomena, a complete set of constitutive equations has been imple-

mented in the code.
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Table 1: Available models for calculating θc(αc) in MAMMA.

Model Equation Auxiliary variables

None θc = 1.0

Costa [4] θc =
(

1− c1 · erf
(√

π
2 αc

(
1 + c2

(1−αc)c3

))) c4
c1

c1 = 0.9995. c2 = 0.4.
c3 = 1.0. c4 = −2.5.

Dingwell [8] θc =
(

1 + 0.75 · αc
c−αc

)2
c = 0.84

Lejeune-Richet [9] θc =
(

1− αc
c1

)−c2
c1 = 0.7. c2 = 3.4.

Melnik-Sparks
v1 [10]

log10

(
θc
c1

)
= atan(c2 · (αc − c3)) + π

2 c1 = 0.84 (1). c2 = 20.6.
c3 = 0.62.

Melnik-Sparks
v2 [11]

log10

(
θc
c1

)
= atan(c2 · (αc − c3)) + π

2 c1 = 0.68 (1). c2 = 8.6.
c3 = 0.69.

Vona v1 [12] θc = 1+φc2(
1−(1−c3)erf

( √
π

2(1−c3)
φ(1+φc4 )

))c1c5 φ =
∑
j αcjρcj/ρ1c1.

c1 = 0.27. c2 = 12.16.
c3 = 0.032. c4 = 0.84.
c5 = 2.8.

Vona v2 [12] θc = 1+φc2(
1−(1−c3)erf

( √
π

2(1−c3)
φ(1+φc4 )

))c1c5 φ =
∑
j αcjρcj/ρ1c1.

c1 = 0.39. c2 = 1.16.
c3 = 0.03. c4 = 0.84.
c5 = 2.8.

(1) Modified for producing θc(0) = 1.0.

2.1 Viscosity models

Since it has been suggested a strong effect of crystal content [4, 5, 6] and exsolved gas bub-

bles [5, 7] on the resulting mixture rheology, magma viscosity (µ) is evaluated using the fol-

lowing expression:

µ = µmelt · θc(αc) · θg(αg) (15)

where µmelt is the crystal and bubble-free viscosity; whereas θc(αc) and θg(αg) account for the

effect of crystals and bubbles on the resulting viscosity, respectively.

The following models are implemented for calculating µmelt, while the available expres-

sions for calculating θc and θg are shown in Tables 1 and 2 and Figs. 2 and 3.
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Figure 2: Available models for calculating θc(αc) in MAMMA.

2.1.1 Hess and Dingwell [24]

This model is based on a multiple non-linear regression of 111 measurements of viscosity, and

is adapted for studying rhyolitic magmas:

log10(µmelt) = −3.545 + 0.833 · ln(w) +
9601− 2368 · ln(w)

T − (195.7 + 32.25 · ln(w))
(16)

where µmelt is expressed in Pa · s, w is dissolved water concentration in wt.% and T is tem-

perature in K.

2.1.2 Giordano et al. [25]

This model predicts the non-Arrhenian Newtonian viscosity of silicate melts as a function of

T and melt composition (major elements). Melt viscosity (µmelt) is calculated using:

log10(µmelt) = −4.55 +
BG

T − CG
(17)

where BG and CG are composition-dependent constants (Eq. 18 and Eq. 19, respectively).

BG =

7∑
i=1

(biMi) +

3∑
j=1

b1jM1j (18)
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Table 2: Available models for calculating θg(αg) in MAMMA.

Model Equation Auxiliary variables

None θg = 1.0

Bagdassarov-Dingwell [13] θg = 1
1+b·αg b = 22.4

Costa et al. [14] θg =
1+25·Ca2(1−αg)8/3
(1−αg)·(1+25·Ca2)

Ca (1)

Ducamp-Raj [15] θg = exp
(
b·αg
1−αg

)
b = −3

Eilers [16, 17] θg =
(

1 +
1.25αg
1−b·αg

)2
b = 1.29

Mackenzie [18] θg = 1− 5
3αg

Quane-Russel [19] θg = exp
(
b·αg
1−αg

)
b = −0.63 (2)

Rahaman [20] θg = exp(−b · αg) b = 11.2

Sibree [21] θg = 1
1−(b·αg)1/3

b = 1.2

Taylor [22] θg = 1 + αg

(1) Capillarity number. Calculated following Llewellin and Manga [23].
(2) Adapted for Phlegrean Fields.

CG =

6∑
i=1

(ciNi) + c11N11 (19)

where Mi, M1j , Ni and N11 refer to the combinations of mol% oxides reported in Table 3, and

bi, b1j , ci and c11 are constant values (Table 3).

2.1.3 Whittington et al. [26]

In this case, the viscosity model is adapted to dacitic magmas and uses the following formu-

lation:

log10(µmelt) = −4.43 +
7618.3− 17.25 · log10(w + 0.26)

T − (406.1− 292.6 · log10(w + 0.26))
(20)

2.2 Solubility models

2.2.1 Henry's law

The equilibrium value of dissolved water is calculated using the following expression:
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Figure 3: Available models for calculating θg(αg) in MAMMA.

xeqd = σ

(
pg
pr

)ε
(21)

where σ is the solubility coefficient, pg is pressure of the gas component, pr is a reference value

of pressure (equal to 1 [Pa]) and ε is the solubility exponent.

2.2.2 Polynomial fit

When the polynomial fit is employed, xeqd is computed with the following expression:

xeqd = c1 ·
(
pg
pr

)2

+ c2 ·
(
pg
pr

)
(22)

where c1 and c2 are fitting parameters.

2.3 Crystallization models

The equilibrium volume fraction of crystals (αeqc ) is calculated using a polynomial fit, as de-

scribed in Table 4.
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Table 3: Coefficients for calculation of BG and CG from melt composition (mol% oxide) [25].

Coefficient Value Oxides

b1 159.6 M1 = SiO2 + TiO2

b2 −173.3 M2 = Al2O3

b3 72.1 M3 = FeO(T) + MnO + P2O5

b4 75.7 M4 = MgO

b5 −39.0 M5 = CaO

b6 −84.1 M6 = Na2O + V(1)

b7 141.5 M7 = V + ln(1 + H2O)

b11 −2.43 M11 = (SiO2+TiO2) · (FM(2))

b12 −0.91 M12 = (SiO2+TA(3) + P2O5) · (NK(4) + H2O)

b13 17.6 M13 = (Al2O3) · (NK)

c1 2.75 N1 = SiO2

c2 15.7 N2 = TA

c3 8.3 N3 = FM

c4 10.2 N4 = CaO

c5 −12.3 N5 = NK

c6 −99.5 N6 = ln(1 + V)

c11 0.30 N11 = (Al2O3+FM + CaO− P2O5) · (NK + V)

(1) V = H2O + F2O−1.
(2) FM = FeO(T) + MnO + MgO.
(3) TA = TiO2+Al2O3.
(4) NK = Na2O + K2O.

2.4 Outgassing models

2.4.1 Forchheimer's law [3]

The model is dependent on the relative position of the fragmentation level. Below magma

fragmentation, since a non-linear relationship between pressure gradient and gas flow rate

has been recognized, Degruyter et al. [3] describe the outgassing process using the Forch-

heimer's law, which includes the influence of viscous (linear term) and inertial forces (quadratic

term) (Eq. 23). Above magma fragmentation, the model presented by Yoshida and Koy-

aguchi [27] is considered; and the presence of a transitional domain is also assumed (Eq. 23).

Please note that |dp/dz| = δf · 4u, where4u is the velocity difference between both phases.
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∣∣∣∣dpdz
∣∣∣∣ =


µg
kD

(4u) +
ρg
kI

(4u)2 if αg ≤ αcr(
µg
kD

(4u) +
ρg
kI

(4u)2
)1−t

·
(
3CD
8ra

ρg(4u)2
)t

if αcr < αg < αt

3CD
8ra

ρg(4u)2 if αg ≥ αt

(23)

where µg and ρg are viscosity and density of the exsolved gas phase, kD and kI are the Darcian

and inertial permeabilities, respectively (Eq. 24 and Eq. 25), CD is a drag coefficient, ra is the

average size of the fragmented magma particles, t = (αg −αcr)/(αt−αcr) and αt controls the

range of the transitional domain.

kD =
(frbrb)

2

8
αmg (24)

kI =
frbrb
f

α(1+3m)/2
g (25)

rb =

(
αg

4π
3 Nbdα1

)1/3

(26)

where frb is the throat-bubble size ratio, rb is the average bubble size,Nbd is the bubble density

number and f and m are fitting parameters.

2.4.2 Darcy's law

In this case, the inertial forces below magma fragmentation (quadratic term) and the transi-

tional domain are not considered, and thus the resulting model is described by the following

expression:

∣∣∣∣dpdz
∣∣∣∣ =

{ µg
kD

(4u) if αg ≤ αcr
3CD
8ra

ρg(4u)2 if αg > αcr
(27)

2.5 Degassing model

If lateral degassing is considered, it follows Eq. 28.

Jlat =
ρgαgkcr
µgfε2

∂p

∂r

∣∣∣
r=Req

(28)
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where kcr is country rock permeability.

2.6 Equations of state

In order to define the specific internal energy and entropy of melt, crystals and dissolved gas,

a linearized version of the Mie-Gruneisen equation of state [28] was adopted:

el(ρl, T ) = ēl + cv,lT +
ρ0,lC

2
0,l − γlp0,l
γlρl

(29)

sl(ρl, T ) = s0,l + cv,l · ln

(
T

T0,l

(
ρ0,l
ρl

)γl−1
)

(30)

where ēl is formation energy, cv,l is the specific heat capacity at constant volume, ρ0,l and C0,l

are density and sound speed at a reference state, γl is the adiabatic exponent and p0,l, s0,l and

T0,l are pressure, specific entropy and temperature at a reference state. Subscript l refers to

melt (m), the dissolved water (d) or crystals (c).

For the equation of state of exsolved gas, two models are available:

2.6.1 Ideal gas

The internal energy and specific entropy are calculated using equations 31 and 32, respec-

tively.

eg(ρg, T ) = ēg + cv,gT (31)

sg(ρg, T ) = s0,g + cv,g · ln

(
T

T0,g

(
ρ0,g
ρg

)γg−1
)

(32)

where cv,g is the specific heat capacity at constant volume, ēg is the formation energy, s0,g,

T0,g and ρ0,g are specific entropy, temperature and density at a reference state and γg is the

adiabatic exponent.

2.6.2 Van der Waals

In this case, the following equations are employed:

eg(ρg, T ) = ēg + cv,gT − ag · ρg (33)
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sg(ρg, T ) = s0,g + cv,g · ln

(
T

T0,g

(
ρ0,g
ρg
· (1− bg · ρg)

)γg−1
)

(34)

where:

ag =
27

64
·
c2v,g(γg − 1)2T 2

cr,g

pcr,g
(35)

bg =
1

8
· cv,g(γg − 1)Tcr,g

pcr,g
(36)

where Tcr,g and pcr,g are critical temperature and pressure of water.

3 vhub app

The user-friendly version of MAMMA allows to model conduit dynamics for six magma com-

positions (rhyolitic, dacitic, trachytic, phonolitic, andesitic and basaltic), considering three

different simulation modalities. Fig. 4 presents the user interface, where the following input

parameters must be imposed:

(1) Simulation type (choice): it indicates the simulation modality. Three alternatives are

available:

(a) Modality 1: Impose conduit geometry (single simulation). In this case, a single

simulation is performed, considering the magma properties and the conduit

geometry set by the user. Mass discharge rate is an output parameter of this

simulation.

(b) Modality 2: Impose MDR (single simulation). A set of numerical simulations

is performed in order to compute the conduit dimensions able to produce the

mass discharge rate set by the user. Magma properties (i.e. water content,

temperature, overpressure) are input parameters, while input conduit radius

is employed as an initial guess for conduit dimensions. Here, cylindrical con-

duits are considered.

(c) Modality 3: Impose conduit geometry with uncertainty ranges. A set of nu-

merical simulations is performed with some variable input parameters (water
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Figure 4: User interface.

content, overpressure, temperature and conduit radius), as a function of the

variability ranges defined by the user. The total number of simulations is de-

fined by the user, allowing to estimate the variability of some output parame-

ters considering the uncertainty of model inputs. Also in this case, cylindrical

conduits are considered. The use of test simulations with modality 1 is highly

recommended before launching a large number of simulations, in order to test

the adopted ranges of input parameters.

(2) Number of simulations (number): only employed when Modality 3 is selected.

(3) Magma composition (choice): rhyolitic, dacitic, trachytic, phonolitic, andesitic or

basaltic. It determines the following models and default parameters:
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(a) Magma viscosity (Hess and Dingwell et al. [24] for rhyolitic magmas; Whit-

tington et al. [26] for dacitic magmas, and Giordano et al. [25] for trachytic,

phonolitic, andesitic and basaltic melts, which depends on the adopted magma

composition).

(b) Water solubility (Zhang [29] for rhyolitic magmas, Moore et al. [30] for dacitic

magmas, Di Matteo et al. [31] for trachytic magmas, Carroll and Blank [32] for

phonolitic melts, Borcharnikov et al. [33] for andesitic magmas and Dixon et

al. [34] for basaltic magmas).

(c) Magma composition (sample Ch-1-08 [35] for rhyolitic magmas, sample 27-

1a-86 [36] for dacitic magmas, sample ZAC [31] for trachytic magmas, sample

T2-182 [32] for phonolitic magmas, sample 27-1b-86 [36] for andesitic magmas

and sample VI-31 [37] for basaltic magmas). These values were employed for

calibrating crystallization models and, when it is required, for viscosity mod-

els.

(d) Crystallization (if it is considered). Using a set of alphaMELTS [38] simula-

tions for different conditions of pressure, temperature and water content, we

calibrated a crystallization model for each magma composition. The result-

ing expressions for calculating the mass fraction of crystals are presented in

Table 4.

(e) Several additional default parameters (see Tables 5 and 6). These parameters

allow to model outgassing processes and the equations of state of crystals,

melt, bubbles and dissolved water.

(4) Effect of bubbles on viscosity (choice): Bagdassarov - Dingwell [13], Costa [14],

Ducamp - Raj [15], Eilers [16, 17], MacKenzie [18], None, Quane - Russel [19], Ra-

haman [20], Sibree [21] or Taylor [22].

(5) Effect of crystals on viscosity (choice): Costa [4], Dingwell [8], Lejeune - Richet [9],

Melnik-Sparks v1 [10], Melnik-Sparks v2 [11], None, Vona v1 [12] or Vona v2 [12].

(6) Crystallization model (choice): Default calibration or None.

(7) Initial volume fraction of crystals (number): it represents the volume fraction of crys-

tals at conduit bottom. It is only employed when Crystallization model is equal to
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Table 4: Calibrated crystallization models. The expression for calculating crystal mass fraction
is: xlc = dT2 · T 2 + dT · T + dp · p + dw · w + d0, where T is temperature in K, p is pressure in
Pa and w is water content in wt.%.

Parameter Rhyolitic Dacitic Trachytic Phonolitic Andesitic Basaltic

dT2 5.17 · 10−6 2.72 · 10−7 −4.47 · 10−7 1.02 · 10−5 −2.25 · 10−6 3.52 · 10−6

dT −1.29 · 10−2 −2.22 · 10−3 −2.29 · 10−3 −2.78 · 10−2 3.52 · 10−3 −1.13 · 10−2

dp 2.08 · 10−10 1.89 · 10−10 4.13 · 10−10 3.30 · 10−10 1.92 · 10−10 1.69 · 10−10

dw −7.04 −7.67 −12.06 −7.65 −9.28 −6.14

d0 8.31 2.69 4.01 18.95 −0.33 9.09

The ranges of input parameters used in alphaMELTS [38] simulations are:
Rhyolitic magmas: T = 1023.15 - 1223.15 K, p = 0 - 250 MPa, w = 0 - 6 wt.% (R = 0.92).
Dacitic magmas: T = 1023.15 - 1223.15 K, p = 0 - 250 MPa, w = 0 - 6 wt.% (R = 0.99).
Trachytic magmas: T = 1073.15 - 1273.15 K, p = 0 - 250 MPa, w = 0 - 5 wt.% (R = 0.96).
Phonolitic magmas: T = 1073.15 - 1273.15 K, p = 0 - 250 MPa, w = 0 - 5 wt.% (R = 0.96).
Andesitic magmas: T = 1173.15 - 1473.15 K, p = 0 - 250 MPa, w = 0 - 4 wt.% (R = 0.98).
Basaltic magmas: T = 1173.15 - 1473.15 K, p = 0 - 250 MPa, w = 0 - 4 wt.% (R = 0.97).

None. Otherwise, the inlet content of crystals is equal to the equilibrium value at

conduit bottom.

(8) Maximum volume fraction of crystals (number): it represents the maximum volume

fraction of crystals allowed by the code. It is only employed when Crystallization

model is equal to Default calibration.

(9) Equation of state of exsolved gas (choice): Ideal gas or Van der Waals.

(10) Allow magma fragmentation (choice).

(11) Exsolved gas volume fraction for magma fragmentation (number): it is only em-

ployed when magma fragmentation is allowed and represents the critical volume frac-

tion of bubbles for fragmentation.

(12) Allow lateral degassing (choice).

(13) Isothermal (choice).

(14) Inlet temperature (number): Temperature at conduit bottom.

(15) Temperature variability (number): Measure of temperature uncertainty. It is only

employed when the Modality 3 is selected.

(16) Inlet overpressure (number): Overpressure at conduit bottom. For computing inlet

pressure, it is assumed a default country rock density of 2700 kg/m3.
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(17) Overpressure variability (number): Measure of overpressure uncertainty. It is only

employed when the Modality 3 is selected.

(18) Water content (number): total water content at conduit bottom.

(19) Water content variability (number): Measure of water content uncertainty. It is only

employed when the Modality 3 is selected.

(20) Conduit geometry (choice): Cylinder, Dyke, Depth dependent 1 (linearly enlarging

conduit), Depth dependent 2 (cylindrical lower portion and linearly enlarging upper

portion) or Depth dependent 3 (two cylindrical portions connected by a transitional,

linearly enlarging zone) (Fig. 5). Cylindrical conduit is the only geometry available

when Modalities 2 and 3 are selected (indeed, in that case, this field is disabled).

(21) Conduit length (number).

(22) Fixed radius (number): it is only employed when conduit geometry is equal to Cylin-

der. When Modality 2 is selected, this value is employed as a first guess of conduit

dimensions.

(23) Radius variability (number): Measure of conduit radius uncertainty. It is only em-

ployed when the Modality 3 is selected.

(24) Major semi-axis (number): it is only employed when conduit geometry is equal to

Dyke.

(25) Minor semi-axis (number): it is only employed when conduit geometry is equal to

Dyke.

(26) Minimum radius (number): it is only employed when conduit geometry is equal to

Depth dependent 1, Depth dependent 2 or Depth dependent 3.

(27) Maximum radius (number): it is only employed when conduit geometry is equal to

Depth dependent 1, Depth dependent 2 or Depth dependent 3.

(28) Transition depth (number): it is only employed when conduit geometry is equal to

Depth dependent 2 or Depth dependent 3.

(29) Length of transition zone (number): it is only employed when conduit geometry is

equal to Depth dependent 3.
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(a) Cylinder (b) Dyke
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2Ra
2Rb

Figure 5: Available conduit geometries in the user-friendly version of MAMMA. L: conduit
length. Rfixed: fixed radius. Ra: major semi-axis. Rb: minor semi-axis. Rmin: minimum
radius. Rmax: maximum radius. d: transition depth. t: length of transition zone.

(30) Mass discharge rate (number): it is only employed when modality 2 is selected.

(31) Relaxation parameter for crystallization (number): log10(τ
(c)).

(32) Relaxation parameter for exsolution of bubbles (number): log10(τ
(d)).

(33) Relaxation parameter for pressure difference (number): log10(τ
(p)).

(34) Outgassing model (choice): Forchheimer or Darcy.

(35) Average size of fragmented magma particles (number).

(36) Bubble number density (number).
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The outputs of the model depend on the selected simulation modality. For modalities 1 and

2, model outputs are the profiles along the conduit of: (1) pressure (phase 1 and phase 2), (2)

velocity (phase 1 and phase 2), (3) temperature, (4) dissolved water (actual and equilibrium

value), (5) viscosity (mixture and melt), (6) density (phase 1 and phase 2), (7) crystal volume

fraction (actual and equilibrium value), (8) exsolved gas volume fraction, (9) mass discharge

rate, (10) equivalent radius and (11) solubility law (Fig. 6). A summary table is also included,

with the most important eruptive parameters (mass discharge rate, exit velocity, exit pressure,

exit density and fragmentation depth). Otherwise, for modality 3, model outputs are the fre-

quency histograms of the following parameters: (1) mass discharge rate, (2) exit pressure, (3)

exit velocity, (4) exit density, (5) fragmentation depth, (6) conduit radius (input parameter of

each simulation), (7) temperature (input parameter of each simulation), (8) overpressure (in-

put parameter of each simulation) and (9) water content (input parameter of each simulation).

Also in this case, a summary table is included, which contains input and output parameters

of each simulation. The input parameters of twelve test simulations are presented in Tables 7

and 8.
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Table 5: Default parameters used in the user-friendly version of MAMMA.

Parameter Rhyolitic Dacitic Trachytic Phonolitic Andesitic Basaltic

pout [Pa] (1) 101300 101300 101300 101300 101300 101300

pcr,g [Pa] 22064000 22064000 22064000 22064000 22064000 22064000

Tcr,g [K] 647 647 647 647 647 647

cv,g [m2/s2K] 1571 1571 1571 1571 1571 1571

γg 1.29 1.29 1.29 1.29 1.29 1.29

ρ0,g [kg/m3] 0.58846 0.58846 0.58846 0.58846 0.58846 0.58846

T0,g [K] 373 373 373 373 373 373

ēg [m2/s2] 0 0 0 0 0 0

s0,g [m2/s2K] 0 0 0 0 0 0

µg [Pa · s] 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5 1.5 · 10−5

ρ0,d [kg/m3] 1000 1000 1000 1000 1000 1000

C0,d [m/s] 407.0225 407.0225 407.0225 407.0225 407.0225 407.0225

cv,d [m2/s2K] 3637.57878 3637.57878 3637.57878 3637.57878 3637.57878 3637.57878

γd 1.11 1.11 1.11 1.11 1.11 1.11

p0,d [Pa] 100000000 100000000 100000000 100000000 100000000 100000000

ēd [m2/s2] 0 0 0 0 0 0

s0,d [m2/s2K] 0 0 0 0 0 0

Solubility model Henry Henry Polynomial Polynomial Henry Henry
σ / c1 4.11 · 10−6 6.12 · 10−6 −1 · 10−18 −2 · 10−18 8.1 · 10−9 5.1 · 10−7

ε / c2 0.5 0.469 6 · 10−10 6 · 10−10 0.818 0.6

ρ0,c [kg/m3] 2650 2650 2750 2750 2900 3050

C0,c [m/s] 2000 2000 2000 2000 2000 2000

cv,c [m2/s2K] 350 350 350 350 360 360

γc 3.4 3.4 3.4 3.4 3.4 3.4

p0,c [Pa] 250000000 250000000 250000000 250000000 250000000 250000000

ēc [m2/s2] 0 0 0 0 0 0

s0,c [m2/s2K] 0 0 0 0 0 0

ρ0,m [kg/m3] 2300 2350 2450 2450 2500 2650

C0,m [m/s] 1500 1500 1500 1500 1500 1500

(1) Pressure at conduit top (for non choked conditions).
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Table 6: Default parameters used in the user-friendly version of MAMMA.

Parameter Rhyolitic Dacitic Trachytic Phonolitic Andesitic Basaltic

cv,m [m2/s2K] 640 688 688 702 702 707

γm 2.1 2.1 2.1 2.1 2.1 2.1

p0,m [Pa] 140000000 140000000 140000000 140000000 140000000 140000000

ēm [m2/s2] 0 0 0 0 0 0

s0,m [m2/s2K] 0 0 0 0 0 0

Viscosity model Hess and
Dingwell
1996

Whittington
et al 2009

Giordano
et al. 2008

Giordano
et al. 2008

Giordano
et al. 2008

Giordano
et al. 2008

g [m/s2] 9.81 9.81 9.81 9.81 9.81 9.81

log10(kcr [m2]) -12 -12 -12 -12 -12 -12

m 4 4 4 4 4 4

frb 0.5 0.5 0.5 0.5 0.5 0.5

f 10 10 10 10 10 10

CD 0.8 0.8 0.8 0.8 0.8 0.8

λw 0.03 0.03 0.03 0.03 0.03 0.03

SiO2 [wt.%] 75.60 68.18 61.71 59.38 58.61 53.77

TiO2 [wt.%] 0.14 0.28 0.45 0.66 0.60 1.71

Al2O3 [wt.%] 13.90 17.81 18.56 18.92 17.48 14.61

FeO [wt.%] 1.35 2.52 3.17 3.47 6.24 10.98

MnO [wt.%] 0.05 0.06 0.27 0.20 0.12 0.28

MgO [wt.%] 0.26 0.95 0.23 0.33 3.59 4.94

CaO [wt.%] 1.46 4.10 1.64 0.79 7.44 8.82

Na2O [wt.%] 4.04 4.29 6.11 10.07 3.71 3.35

K2O [wt.%] 2.93 1.53 7.09 5.55 1.67 0.89

P2O5 [wt.%] 0.06 0.10 0.02 0.07 0.21 0.40
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Table 7: Test simulations.

Parameter S1 S2 S3 S4 S5 S6

Simulation type (modality) 1 1 1 1 1 1
Number of simulations NaN NaN NaN NaN NaN NaN

Composition Rhyolitic Dacitic Trachytic Phonolitic Andesitic Basaltic
Effect of bubbles Costa Costa Costa Quane -

Russel
Costa None

Effect of crystals Costa Costa Lejeune -
Richet

Dingwell Melnik -
Sparks v2

Costa

Crystallization model Default Default Default Default Default Default
Initial fraction of crystals
[vol.%]

NaN NaN NaN NaN NaN NaN

Maximum fraction of crys-
tals [vol.%]

0.65 0.65 0.65 0.65 0.65 0.65

Equations of state Ideal gas Ideal gas Ideal gas Van der
Waals

Ideal gas Ideal gas

Magma fragmentation Yes Yes Yes Yes Yes Yes
αcr 0.7 0.7 0.7 0.7 0.7 0.7

Lateral degassing No No No No No No
Isothermal Yes No Yes Yes Yes Yes
Inlet temperature [◦C] 850 900 900 900 1000 1100

Temperature variability [◦C] NaN NaN NaN NaN NaN NaN

Inlet overpressure [MPa] +10.0 +10.0 +10.0 +10.0 +10.0 +10.0

Pressure variability [MPa] NaN NaN NaN NaN NaN NaN

Water content [wt.%] 4.5 4.0 4.0 4.0 4.0 3.0

Water variability [wt.%] NaN NaN NaN NaN NaN NaN

Conduit geometry Cylinder DD1 DD2 Cylinder Cylinder Dyke
Conduit length [m] 5000 5000 7000 5000 5000 5000

Fixed radius [m] 30 NaN NaN 15 8 NaN

Radius variability [m] NaN NaN NaN NaN NaN NaN

Major semi-axis [m] NaN NaN NaN NaN NaN 200

Minor semi-axis [m] NaN NaN NaN NaN NaN 1

Minimum radius [m] NaN 12 12 NaN NaN NaN

Maximum radius [m] NaN 14 14 NaN NaN NaN

Transition depth [m] NaN NaN 2000 NaN NaN NaN

Length of transition [m] NaN NaN NaN NaN NaN NaN

Mass discharge rate [kg/s] NaN NaN NaN NaN NaN NaN

log10(τ (c)) +2.0 +2.0 +2.0 +2.0 +2.0 +4.0

log10(τ (d)) −4.0 −4.0 −4.0 −4.0 −4.0 −4.0

log10(τ (p)) −4.0 −4.0 −4.0 −4.0 −4.0 −4.0

Outgassing model Forchheimer Forchheimer Forchheimer Forchheimer Darcy Darcy
ra [m] 0.001 0.001 0.001 0.001 0.001 0.001

log10(Nbd) 15.0 15.0 13.0 13.0 10.0 10.0
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Table 8: Test simulations.

Parameter S7 S8 S9 S10 S11 S12

Simulation type (modality) 2 2 2 3 3 3
Number of simulations NaN NaN NaN 10 10 10

Composition Rhyolitic Trachytic Andesitic Dacitic Phonolitic Basaltic
Effect of bubbles Costa Costa Costa Costa Costa None
Effect of crystals Costa Costa Melnik -

Sparks v1
Vona v1 Melnik -

Sparks v2
Costa

Crystallization model Default Default None Default Default Default
Initial fraction of crystals
[vol.%]

NaN NaN 0.2 NaN NaN NaN

Maximum fraction of crys-
tals [vol.%]

0.65 0.65 NaN 0.65 0.65 0.65

Equations of state Ideal gas Ideal gas Ideal gas Ideal gas Ideal gas Ideal gas
Magma fragmentation Yes Yes Yes Yes Yes Yes
αcr 0.7 0.7 0.7 0.7 0.7 0.7

Lateral degassing No No No No No No
Isothermal Yes Yes Yes Yes Yes Yes
Inlet temperature [◦C] 850 900 1000 900 900 1100

Temperature variability [◦C] NaN NaN NaN 10 0 20

Inlet overpressure [MPa] +10.0 +10.0 +10.0 +10.0 0.0 +10.0

Pressure variability [MPa] NaN NaN NaN 5.0 5.0 5.0

Water content [wt.%] 4.5 4.0 4.5 4.0 4.5 3.0

Water variability [wt.%] NaN NaN NaN 0.5 0.5 0.5

Conduit geometry (1) Cylinder Cylinder Cylinder Cylinder Cylinder Cylinder
Conduit length [m] 5000 5000 5000 5000 5000 5000

Fixed radius [m] (2) 30 12 8 12 15 8

Radius variability [m] NaN NaN NaN 1 1 2

Major semi-axis [m] NaN NaN NaN NaN NaN NaN

Minor semi-axis [m] NaN NaN NaN NaN NaN NaN

Minimum radius [m] NaN NaN NaN NaN NaN NaN

Maximum radius [m] NaN NaN NaN NaN NaN NaN

Transition depth [m] NaN NaN NaN NaN NaN NaN

Length of transition [m] NaN NaN NaN NaN NaN NaN

Mass discharge rate [kg/s] 8 · 107 2 · 107 3 · 107 NaN NaN NaN

log10(τ (c)) +2.0 +2.0 +2.0 +2.0 +2.0 +2.0

log10(τ (d)) −4.0 −4.0 −4.0 −4.0 −4.0 −4.0

log10(τ (p)) −4.0 −4.0 −4.0 −4.0 −4.0 −4.0

Outgassing model Forchheimer Forchheimer Darcy Forchheimer Forchheimer Darcy
ra [m] 0.001 0.001 0.001 0.001 0.001 0.001

log10(Nbd) 15.0 13.0 10.0 15.0 13.0 10.0

(1) For modalities 2 and 3, Cylinder is the only available conduit geometry.
(2) For modality 2, it is employed as the initial guess for conduit dimensions.
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