Thermal remote sensing of active volcanoes in an operational environment: approaches of Alaska (AVO) and Hawaii (HVO)
Satellite data’s strengths kick in with the eruption.

THERMAL ANOMALIES:

“Hotspots” where a volcano heats up before and during eruption.

VOLCANIC ASH PLUMES:

Tracking the position of volcanic ash clouds.
AVO is the first VO to use near real-time satellite remote sensing in its day to day operations.

Data Sources:
1. Receiving stations at UAF/GI
2. Gilmore Creek NOAA
3. Navy Research Labs at Monterey, CA
Sectors and Data for Volcano Monitoring

Passes are divided into subsectors for volcanic regions to speed processing.
Near real-time data

• Why provide access?
 – Operational monitoring of North Pacific volcanoes
 – Need to respond 24 hours a day if an eruption
 – Need to provide quick, accurate response

• What data do we show?
 – AVHRR, MODIS, GOES and MTSAT data
 – Puff Volcanic Ash Tracking and Dispersion model

• Options to view?
 – Web / iPhone / iPad / Google Earth / ArcGIS Explorer

• Operational benefits
 – Speed of availability
 – Access anywhere
Pre web based access?

- TerraScan Software
 - Requires access to server for data
 - SSH link and login required
Analysis of Volcanic Activity

• Thermal anomalies
 – 3.6 µm channel
 – “Hotspots” where a volcano heats up before and during eruption

• Volcanic Ash Clouds
 – 11 and 12 µm channels
 – Tracking the position of volcanic ash clouds.

• Automated alarm system and daily monitoring
 – Text and email alerts
 – Daily AM and PM reports and database entry
Image flipper :: Volcanic Ash

http://avo.images.alaska.edu/tools/ftp_browser.php
Image flipper :: Hotspot

http://avo.images.alaska.edu/tools/ftp_browser.php
Remote Sensing data in Google Earth™
What is the Puff model?

• Specifically tailored for volcanic ash and 3D tracking of volcanic ash particles

• Ash particles released over volcano and tracked over time

• Uses meteorological wind fields (GFS, NAM216, Reanalysis, WRF)

• Initialization parameters include
 – Volcano name and location
 – Number of particles
 – Mean Particle size and spread
 – Plume dimensions (height, width and shape)
 – Length of model prediction and length of eruption
 – Output time step
 – Horizontal and Vertical Diffusion (constant or varying)
 – Wind field model

(http://puff.images.alaska.edu)
Puff – Volcanic Ash Tracking and Dispersion model
http://puff.images.alaska.edu

- Automated forecasts for 37 volcanoes worldwide
- Forecasts for initial plumes from 4 – 16 km ASL
- 24 hour forecasts, updated every 3 – 6 hours
- Standardized displays to reduce hazard assessment time
- Two-dimensional and Three-dimensional visualizations
- NWP vertical profiles to assist plume height determination
Online WebPuff
http://puff.images.alaska.edu/cgi-bin/login_agu.pl

Run for any volcano worldwide in real time or retrospectively from 1970 – present
Cleveland, Alaska

Puff Prediction for Potential Eruption at Cleveland for 10 km Plume

Previous Cleveland Run

All times are UTC
Stop animation = Escape Key
Re-Start Animation = F5 Key

Puff Prediction, output every hour for 24 hr prediction

Puff output: Current ▼ Load
Puff output: Previous ▼ Load

Simulation provided by Geophysical Institute, UAF
www.gi.alaska.edu / puff.images.alaska.edu

Cleveland
2010 09 15 16:00
0 2 4 6 8 10 12 14 16 km
2.20
Determination of Plume Heights
Puff to Satellite comparison

Threat Score from how much over- and under- estimated by model?

iPhone access to data
Okmok Volcano, Alaska - 2008
Kasatochi Volcano, Alaska - 2008
Okmok versus Kasatochi Volcanic Clouds

Okmok

Kasatochi
Hawaiian Volcano Observatory (HVO): just starting to use thermal satellite data
Mauna Loa

Kīlauea

Kīlauea Caldera

East Rift Zone

Kīlauea lava flows 1750–1983

East Rift Zone eruption 1983-now
Kilauea: exceptionally well-monitored, but still observational gaps
In Hawaii, primary hazard is lava flows – destruction of property/infrastructure

Photos by Bruce Omori
MODIS data are incoming to HVO thanks to UH Manoa (thanks Rob!)

...but images are generally 1 day old
VALVE: web-based display of monitoring data (seismic, GPS, gas, etc.)

MODIS excess radiance for various ROIs

Choose time frame for display

Plot shows radiance from east rift zone lava flows over last year
NOAA GOES website: image every 30 minutes, shown within an hour of acquisition

Thermal anomalies at east rift zone flow field and summit of Kilauea
GOES: excellent temporal resolution (30 minutes), poor spatial resolution (4 km)

BUT: on east rift zone, it can tell us if there are new breakouts or not

No thermal anomaly: all lava flowing through tubes

Thermal anomaly: lava breaking out from tube system, creating surface flows
ASTER thermal data (90 m pixel size) useful for locating surface flows, but currently too slow to arrive – a day or more late.

Can you help us with this, Mike?
Differences between AVO and HVO

- AVO main hazard is ash plumes, HVO is lava flows
- AVO needs images in minutes, HVO would be fine with hours
- HVO needs to know location of lava flows within tens to hundreds of meters – so high-resolution imagery (10-90 m) is necessary
- AVO does not need high resolution imagery
- HVO doesn’t have receiving station

<table>
<thead>
<tr>
<th></th>
<th>AVO: ash plumes</th>
<th>HVO: lava flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat speed:</td>
<td>fast (km/hr)</td>
<td>slow (<km/day)</td>
</tr>
<tr>
<td>Temporal resolution needed:</td>
<td>minutes</td>
<td>hours</td>
</tr>
<tr>
<td>Threat size:</td>
<td>big (kms)</td>
<td>small (10s meters)</td>
</tr>
<tr>
<td>Spatial resolution needed:</td>
<td>km</td>
<td>10s meters</td>
</tr>
</tbody>
</table>
Similarities between AVO and HVO

• Require imagery within minutes to hours – currently easiest solution to this problem is to have a receiving station (expensive - AVO has one, HVO doesn’t)

• Require automated pre-processing of images – cannot waste time on routine processing

• Web-based analysis/viewing tools extremely useful (and portable)
 • AVO: image flipper/web-tools
 • HVO: VALVE, GOES website

• Low spatial resolution data can still be very useful for both
 • at HVO, low resolution data can say if there’s a breakout or not (triggers overflight or visit on foot)

Temporal resolution is irrelevant if access time is long

Take home point: need short access time