Passive Activity Using Thermal Infrared Cameras/ Radiometers: Fumaroles, Mud Pots and Mud Volcanoes

“fun with ice” by the esteemed Dr. Prada (at the IAVCEI Workshop in Argentina in 2004)

Michael Ramsey¹, Adam Carter², Kevin Reath¹

¹ Dept. of Geology and Planetary Science University of Pittsburgh, Pittsburgh, PA, USA
² ExxonMobil, Houston, TX, USA
FLIR images of my new house in Pittsburgh, PA

Trefl=45 Tatm=36 Dst=675 FOV 24
1/12/11 8:55:21 AM -40 - +120 e=1.00 °C
• FLIR Measurements for Passive Eruptions
 – been a series of side projects
 ▪ document the detection thresholds for the FLIR
 ▪ proxy for future Mars rover missions to detect CH$_4$ fumaroles
 – fumarole measurements
 ▪ Cerro Negro, Nicaragua
 ➢ thermal flux comparison to gas geochemistry
 ▪ Salton Sea, CA
 ➢ gas detection
 – mud pots & mud volcanoes
 ▪ Seltun, Iceland and Salton Sea, CA
 ➢ temperatures
Fumaroles: Cerro Negro

• Objectives:
 – characterize thermal flux of the crater fumarole field
 ▪ comparison with day/night thermal IR satellite data
 ▪ support gas geochemistry measurements
 ▪ integrate day/night FLIR data into a thermal inertia model of the crater’s surface materials
 ➢ better describe variable nature of the emissivity of crusts, sublimes, and multiple temperatures
Fumaroles: Cerro Negro

Fumaroles were thermally sampled both directly and using the FLIR (near & far field).
Fumaroles: Cerro Negro

nighttime sampling (radiometer, FLIR, thermocouple)
Fumaroles: Cerro Negro

Temperatures Measured for Sampled Fumaroles

from T. Lopez (2006)
Mud Volcanoes: Salton Sea

- **Data Collection**
 - thermal imaging/video (FLIR) and kinetic temperatures recorded
 - soil samples collected from mud volcanoes, mud pots, active deposition areas and surrounding sediment
 - analyzed using laboratory thermal emission spectroscopy laboratory
 - compared to 128 channel airborne TIR system (SEBASS)

Salton Sea geothermal field zones

large mud volcano cluster (3 m diameter) within zone 2
• **TIR Data Collection**

 – ground cal/val at four most active geothermal areas

 ▪ mud volcano vents were warmer (25-40°C)
 ▪ mud pots were 15-10°C cooler than the surrounding area
 ▪ **examples**: mud volcano (left) and a pair of mud pots (right)

 ➢ at some mud pots, the solar heating was larger than the temperature of the mud \(\rightarrow \) would result in cool TIR anomalies
• **Time Series of Mud “Eruptions”**

 - 60 Hz frame rate

 - two areas (regions of interest) designated to capture the hot mud and warm gas emissions
Mud Volcanoes: Salton Sea

Temperature/Time Plot of Thermal Emissions from the Salton Sea Mud Volcanoes

- **Initial Statistical Analysis of “Eruption” Data:**
 - Average: 3.4 s
 - Max: 9.5 s
 - Min: 0.7 s

- **Background:**
 - Bkgnd: 38.5°C
 - ΔT: 14.1°C

- **Gas Pulses:**
 - Bkgnd: 27.9°C
 - ΔT: 1.9°C

- **Time Lag:**
 - ΔT: 0.75 s
Mud Pots: Seltún, Iceland

- Two Primary Objectives
 - analysis of smaller geothermal features using available instruments to document small-scale thermal events (e.g. boiling water/phreatic activity, mud pools, hot springs, etc.) in collaboration with ÍSOR
 - mapping of natural geothermal features using ASTER data over the available data archive (2000 – present)
Mud Pots: Seltún, Iceland

- Two Primary Objectives
 - Analysis of smaller geothermal features using available instruments to document small-scale thermal events (e.g. boiling water/phreatic activity, mud pools, hot springs, etc.) in collaboration with ISOR
 - Mapping of natural geothermal features using ASTER data over the available data archive (2000 – present)
Mud Pots: Seltún, Iceland

- **ThermaCam Researcher™ software**
 - allows for detailed analyses of FLIR data
 - steady-state thermal output; phase differences btwn. bubbles

PASI Workshop
San Jose, Costa Rica (21 Jan 2011)
Results: Poas Volcano

Poas fumarole field
(data stretched from 20 – 200 °C; $T_{\text{max}} = > 540$ °C)

Poas crater lake
(data stretched from 30 – 55 °C; $T_{\text{max}} = 58.4$ °C)
Conclusions

• TIR Measurements of Passive Activity
 – direct temperature measurements
 ▪ detection of new (changes in) thermal activity
 ▪ heat flow over time
 ▪ instantaneous thermal flux
 – scaling for direct physical measurements
 ▪ gas geochemistry
 ▪ comparison to satellite data

8.6 μm FLIR images of Poas plume (top: “clear”; bottom: higher SO₂ abundance)