Ultraviolet digital imaging of volcanic plumes

Patricia Nadeau
PASI – Costa Rica
January 15, 2011
The role of gas in volcanism

“The observatory worker who has lived a quarter of a century with Hawaiian lavas frothing in action, cannot fail to realize that gas chemistry is the heart of the volcano magma problem.”

– Thomas Jaggar, HVO founder

- Gases drive eruptions, can affect viscosity, explosivity
- Models for volcanic seismicity involve bubbly fluids
- Temporal resolution of emission rates and composition often poor in comparison to seismic, deformation, or acoustic data
SO$_2$ and volcanoes

- Decreasing pressure and temperature as magma rises cause gases to exsolve

- SO$_2$ 3rd most abundant gas in volcanic emissions (after H$_2$O and CO$_2$)

- But H$_2$O and CO$_2$ already present in high, and variable, concentrations in background atmosphere

- No background atmospheric SO$_2$ → easy detection, often the choice gas for monitoring volcanoes
How to monitor SO_2?

- Direct sampling — Giggenbach bottles, multi-gas sensors, etc. at fumaroles
 - Doesn’t measure emission rate, just variations in ratios of different gases
How to monitor SO$_2$?

- Satellite remote sensing – TOMS, OMI, etc.
 - Only sees one instant at a time, just determines (daily) burden of SO$_2$
Ground-based UV remote sensing used for volcanic SO_2 since 1970s

- **COSPEC**
 - Analogue data, bulky, expensive ($>60,000$ USD)
Ground-based UV remote sensing used for volcanic SO$_2$ since 1970s

- Mini-DOAS / FLYSPEC
 - Digital, smaller, cheaper
 (~10% cost of COSPEC)
Ground-based UV remote sensing used for volcanic SO$_2$ since 1970s

- Increased scattering
- Traverse under plume
- Helicopter flying towards you
- COSPEC

- One-dimensional profile of plume
Limited temporal resolution

- Galeras, 1993 - \(~1/\text{week}\)

(Fischer et al., Nature, 1994)
Limited temporal resolution

- Soufrière Hills, 1997 - ~1/day

(Watson et al, JVGR, 2000)
Limited temporal resolution

- Soufrière Hills, 2002 - ~10/hour

(Edmonds et al., Bull. Volc., 2003)
Limited temporal resolution

- Karymsky, 1999 – repeated COSPEC scans

(Fischer et al., Geology, 2002)
Limited spatial resolution

- Erebus, 2006 – continuous wide-angle DOAS

(Boichu et al., JVGR 2010)
UV camera enables two-dimensional view of SO$_2$ plume

- Plume dynamics
- Plume speed
- Sampling rate up to 1 Hz; integration with other geophysical datasets
The principles

- UV spectroscopy
- Beer’s Law:
 - \(I(\lambda) = I_0(\lambda) \exp(-L\alpha(\lambda)c) \)
- Radiation source is scattered sunlight
The camera itself – an Apogee Alta U6

105 mm Coastal Optics quartz lens

307 nm and 326 nm bandpass filters (+ filter wheel or on separate cameras)

1024 x 1024 pixel CCD sensor with 16 bit quantization
Using the camera in the field

- Scattered skylight → sun behind or to side
- Clouds in front of plume block absorption signal; data collection impossible
Converting images to SO$_2$ maps

- $A = -\log (l/l_0)$

- Beer’s Law: $A \propto [SO_2]^d$
Converting images to SO$_2$ maps

Motivation

Goals

UV Camera

Fuego

Kilauea

Pacaya

Elsewhere

Conclusions

<table>
<thead>
<tr>
<th>Concentration path-length (ppmm)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0.05</td>
</tr>
<tr>
<td>400</td>
<td>0.15</td>
</tr>
<tr>
<td>600</td>
<td>0.25</td>
</tr>
<tr>
<td>800</td>
<td>0.30</td>
</tr>
<tr>
<td>1000</td>
<td>0.35</td>
</tr>
</tbody>
</table>

$y = 0.0002x + 0.074$
Initial data processing protocol not fit for increasingly large datasets

- Individual images rather than series
- User-intensive processing of each image, using two programs
- Ideal day of data collection yields 10,000+ images
Program Development

- Minimal user input
- Handles variable plume geometries
- MATLAB® only
- Full datasets of 1,000s of images can be processed at once
Automatic derivation of plume speed

\[\text{ER} = [\text{SO}_2] \cdot \cos \theta \cdot d \cdot v \cdot c \]

(Williams-Jones et al., 2006)
Results thus far are comparable to those from standard methods
Results thus far are comparable to those from standard methods.

(Dalton et al., JVGR 2009)
Fuego volcano, Guatemala

- Basaltic strato-volcano (~3800m); high-Al, 2-6 wt% H₂O
- Range of explosion sizes, lava flows, pyroclastic flows; cycles of activity
- Last large eruption was sub-Plinian in 1974; currently experiencing small, ashy ‘degassing explosions’

(Lyons et al., 2009)
Models for low-frequency seismicity

- Crack resonance
- Bubble coalescence
- Choked flow
- Others

(Ripepe and Gordeev, 1999)
Methodology

- 2008: 1 day of UV camera with concurrent seismic and acoustic; 5 station array
- 2009: 3 days of concurrent data; 12 seismo-acoustic stations, 5 in antenna array
Results - 2009

Concentration pathlength (ppm-m)

SO₂

ICA (ppm²-m)

Seismic

Counts

Seismic

Acoustic

Counts

Time (s)

Acoustic

Time relative to image (s)
Results - 2009

(Nadeau et al., GRL, 2011)
Results - 2009

(Nadeau et al., GRL, 2011)
Results - 2008

- VLP seismic events followed by peak in SO$_2$ emissions
- Larger VLPs are generally followed by longer, higher peaks in SO$_2$
- Time between VLPs inversely related to size
Kilauea Volcano, Hawaii

(Schmincke, 2004)
Methodology

- Focus on Halema`uma`u activity
 - 2 UV cameras, simultaneous images, different filters
 - Broadband seismo-acoustic array (permanent at summit, HVO network)
 - FTIR spectrometer
 - Visible camera for in-vent activity
 - FLYSPEC traverses/scans
 - 3-station infrasound array
 - Continuous gravity

- ~1 month deployment, May 2010 (also few days of data, February/March 2010)
Methodology
SO₂ correlates almost exactly with RSAM during lava level high-stands and drops.
Preliminary Results

- **SO₂** correlates almost exactly with **RSAM** during lava level high-stands and drops.
SO\textsubscript{2} correlates almost exactly with RSAM during lava level high-stands and drops
Preliminary Results
Background days show longer term correlated trends?
Deflation/Inflation (DI) events also thought to possibly be caused by variations in deep supply of gas-rich magma; should be reflected in SO₂ record.
Pacaya – mass validation with infrasound

(Dalton et al., GRL, 2010)
Comparison of gas masses from UV camera and infrasound

- Infrasound generally underestimates gas mass based on camera-derived estimates
- Other source/style of degassing

(Dalton et al., GRL, 2010)
FLYSPEC validation
Seismometer; continuous tremor
Continuous gravimeter
Other volcanoes

- Mori and Burton (JVGR, 2009):
 - quantification of gas mass in individual explosions at Stromboli, Italy
Other volcanoes

- Tamburello et al. (JVGR, 2011):
 - Gas emissions from individual fumaroles at Vulcano, Italy

- Kazahaya and Mori (AGU fall meeting, 2010):
 - Decreases in SO$_2$ emissions concurrent to increases in tilt in explosions at Sakurajima, Japan
Future work

- Spectral analysis of SO$_2$: Lomb-Scargle method, FFT
- Used on Erebus; didn’t result in anything we can see on Fuego
- May still yield useful results at places like Kilauea or Masaya
UV camera is a powerful, new tool for quantifying SO$_2$ emissions

- New methodology makes data processing manageable
- Exploiting 2-D nature of imagery improves method further
- Detailed analysis of SO$_2$ with seismo-acoustic data has given insight into behavior at Fuego, Kilauea, Pacaya, and other volcanoes