

Introduction

A definition of volcanic unrest:

A deviation from the background or baseline behaviour of a volcano towards a level of activity, which is cause for concern in the short-term (hours to few months) because it might be a prelude to an eruption

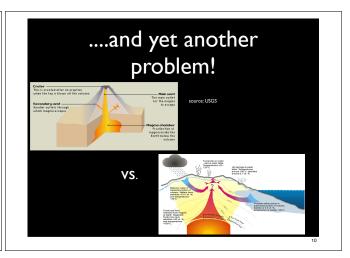
The problem

 Our knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, wholly inadequate to deal effectively with crises of volcanic unrest.

Questions?

- What is the cause of unrest?
- What is the consequence/outcome?
- When will it be over?

more problems:


- few volcanoes are persistently active
- many volcanoes show periods of dormancy (repose) over many hundreds or thousands of years in between eruptions
- volcanic unrest does NOT necessarily culminate in eruption
- How to know if a volcano reactivates?
- How to predict future behaviour?

The answer:

DATA

...and here is our next problem!

Where, when and how to get what data? • Geological data • Geophysical data • Geochemical data

The orchestra of signals (space and/or time domain)

Magmatic signals: melt, fluids, convection, chemical differentiation, thermal evolution, rejuvenation, loss

Tectonic signals: active faulting, local/regional stress field

Aquifer signals: aqueous fluid migration, phase changes, T and/or P effects

Meteoric signals: precipitation, P and T effects

RESERVOIR CHARACTERISATION

Problem: lack of mechanistic

Classic scope of geodetic monitoring • perform dynamic investigations

• record signals

to quantify spatial and temporal evolution of volcanic system

Geodetic monitoring

 Ground deformation (ground-based, airborne and space-borne):

 $\Delta V \approx f(\Delta U_z, \Delta U_r)$

• Gravity (ground-based):

 $\Delta M \approx f(\Delta g_z)$

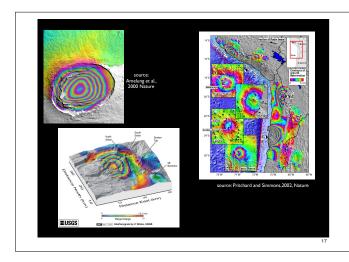
 integrated geodetic investigations have unique capability to characterise the nature of causative source:

$$\rho = \frac{\Delta M}{\Delta V}$$

we can thus discriminate between aqueous fluids (density ~1000kg/m3) and magma (density ~2500 kg/m3)

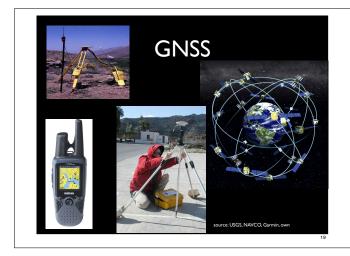
14

Ground deformation


 InSAR, LIDAR, GNSS (GPS and GLONASS), EDM, levelling Insar: Interferometric Synthetic Aperture Radar

Pas 1: Before earthquake

Pas 2: After earthquake


Full phase shift (2π) equals 28.3 mm displacement in the LOS = I color fringe in interferogram

Toma 14 mm 21 mm 28 mm range change

GNSS

- Global Navigation Satellite System
- Developed by the US Department of Defense (GPS), USSR/Russian Space Forces (GLONASS)
- provides 3-D position, velocity, and time 24/7 anywhere in the world via trilateration
- free for civilian use
- 5 freq L1-5
- dual frequencies (L1 and L2) or single (L1) frequency receivers,
- dual freq rec. generally give higher precision.

How do we obtain data?

- Antennas and receivers/controller (2 kits min if no existing network available)
- Costs: anything from between £5k and £30k per unit
- campaign-style surveys
- continuous observations

20

Continuous observations

- installation as reference
- running 24/7
- enables fix on location in 3-D (x, y, z)
- with high precision (mm precision both horizontal and vertical)

things to look out for:

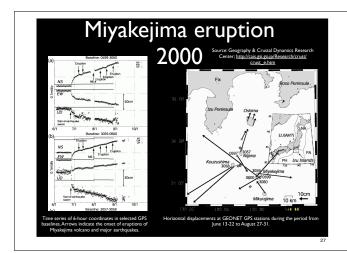
- safe location
- monument stability
- protection against elements
- accessibility
- good sky visibility
- secure power supply
- data storage/data transfer

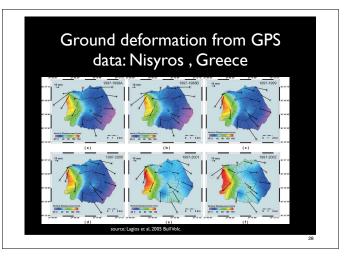
21

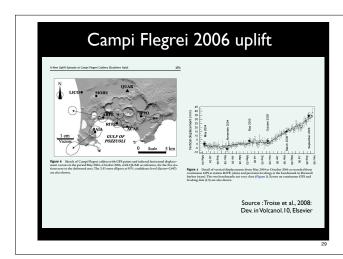
How to obtain data

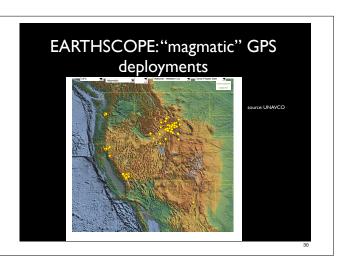
- options for different occupation modes
- most used for monitoring: static observations
- operate at least one reference and several rovers (can be installed for any desired period of time)
- process baselines between rover and reference

Errors


Sources of User Equivalent Range Errors (UERE)


Ionospheric effects ± 5 m Ephemeris errors ± 2.5 m Satellite clock errors ± 2 m Multipath distortion ± 1 m Tropospheric effects ± 0.5 m Numerical errors ± 1 m


25


Post-processing

- process data against a known reference (relative displacement vectors)
- reference station may be your own with good fix on position
- alternatively use service such as SCOUT

Gravimetry for volcano monitoring

- Not standard tool
- time lapse micro-gravity surveys
- continuous gravimetric observation
- detection of changes in the acceleration due to Earth's gravity

31

Field setup for gravity network

- Selection of reference outside area of interest
- installation of benchmark (BM)
- measurement of gravity difference between reference and BM
- location and elevation measured by GNSS or theodolite

Example

reference

benchmark

measurement loops:

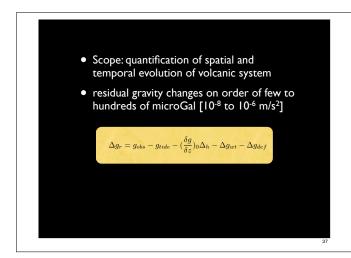
R > BM1 > BM2 > BM3 >

BM2 > R

R > BM10 > BM 9 > BM 3

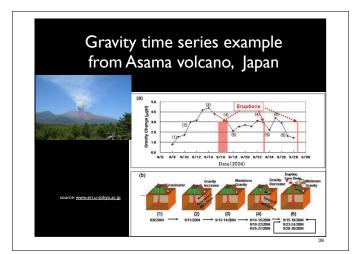
BM1 > BM10 > R

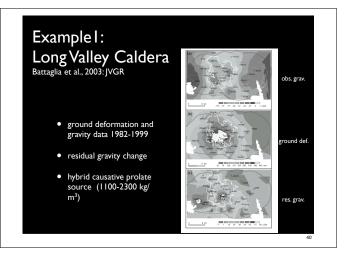
Start and end loop at reference!!!

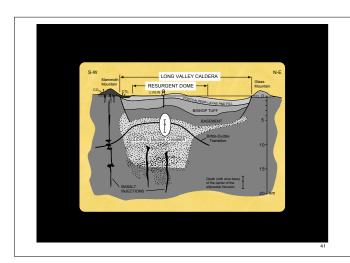

Why?

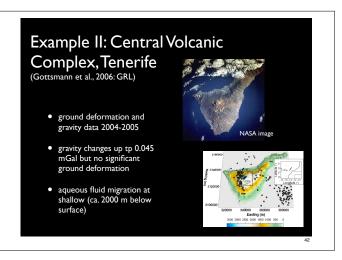
Errors

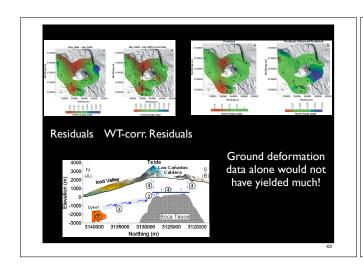
- Instrument drift (mechanical failure of spring)
- Tares (sudden jumps in reading due to mechanical readjustment: permanent or retrievable)

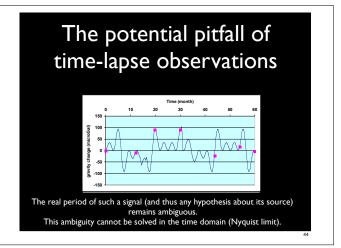

Gravity reduction

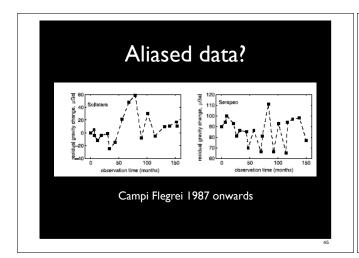

- Earth and Ocean tides
- Drift
- Free air correction: -0.3086 mGal/m (use elevation data from GNSS)
- contribution from ground water table variations
- deformation effects (source dependent)
- NO: latitude, Bouguer or terrain corrections (needed for static gravity surveys though)

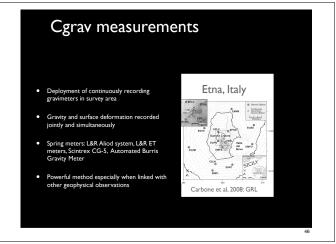


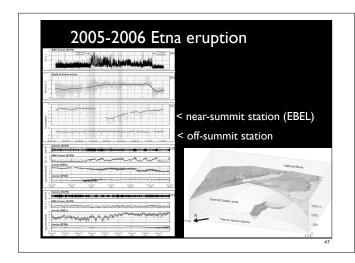

Time series

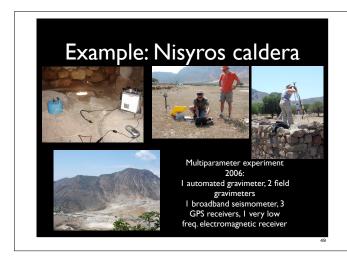

- Repeated periodic occupation of network (e.g., monthly, yearly, every 2.5 years)
- Continuous observations (eg., < 1Hz)

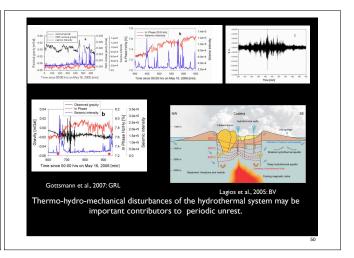




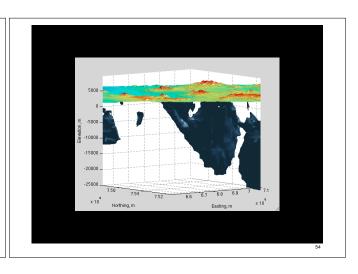


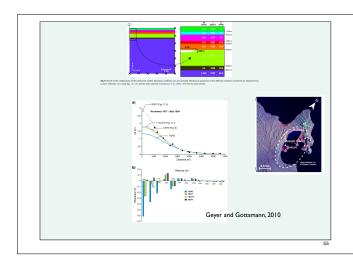






Multi-parameter perspective • No single technique can provide all answers • Need to think outside the box • Need for multi-parameter analysis




Assessment of causative source(s) via data modelling via trial and error to match recorded signal

Forward models: predict signal from known source Inverse models: use signal to obtain (invert for) the source characteristics

Analytical vs Numerical Modelling Analytical models are tractable homogeneous linearly elastic medium result can be misleading V Numerical complex heterogeneous medium CPU and cost intensive

Data worth having: -3-D vector field of surface displacement -mass variations in both space and time -static data

Conclusions (I)

- Volcano geodesy is an ever evolving field
- New techniques
- Increasing computational power
- Remote techniques essential
- Field work indispensable (ground truthing!!!)

Shareholders in volcano unrest
(geodetic signals)

Need for
multiparameter approach

Aqueous fluids
Hybrids
Tectonics

Baseline
monitoring
Modelling?

Conclusions (II)

- no single solution to address the problem of how to best track mass/ density variations beneath volcanoes
- each case needs dedicated analysis for network design
- integrated geodetic investigations are a powerful component of volcano monitoring
- observed geodetic data need to be considered within the general context of the available volcanological and geological observations
- integrated analysis and multiparameter interpretation is essential

58

Conclusions (III)

- Data essential for appraisal of volcanic phenomena
- essential for forecasting
- stochastic and non-linear processes?
- probabilistic models
- volcano memory?
- Increasingly vulnerable population (500 mio people in vicinity of active volcanoes)
- fundamental input for hazard assessment and risk mitigation in addition to geologic data

Current limitations and future opportunities

- Non-uniqueness of geodetic modelling
- Data aliasing (indiv. obs. over years)
- Stability of reference
- Cross-correlation with other techniques
- Combine campaign, cont. and static measurements
- Fully integrated geodetic observations incl. hybrid gravimetry

Selected further reading

Volcano Deformation (general)

- GNSS Processing: http://www.usace.army.mil/publications/eng-manuals/em1110-1-1003/c-l.pdf
 or c-10.pdf
- Encyclopedia of Volcanoes (also for gravimetry)
- Volcano Deformation by Daniel Dzurisin (Springer)
- Earthquake and Volcano Deformation by Paul Segall (Princeton Univ. Press)

Volcano Gravimetry

- Gottsmann and Battaglia 2008, in: Caldera Volcanism, Developments in Volcanology 10, Elsevier
- Battaglia et al., Geophysics 73, 2008
- Williams-Jones et al., Geophysics 73, 2008)
 - General geodesy: http://landau.mines.edu/~samizdat (J. Wahr, Geodesy)