

GROUND-BASED THERMAL MONITORING

Nick Varley Universidad de Colima, Mexico nick@ucol.mx

Thermal monitoring

- Remote sensing often is the first signal of a new eruption for remote volcanoes
- Fumarole direct temperature measurements
- Spring water temperatures
- Radiometer large pixel detectors
- Temperature of PFs, lahars
- Thermal imaging

Thermal imaging

Recent development of IR cameras

- Getting cheaper
- Stable calibration
- Lightweight, portable instruments

Thermal infrared 7.5 – 13 μ m Sensitivity - <0.1°C Fast – up to 60 Hz

VarioCAM thermal camera

320 x 240 model

• German camera ■ Hr model 640 x 480 Resolution enhancement 1280 x 960 ■ 8 – 13 µm ■ 50 Hz Firewire \Box SD cards ■ 32,000 Euro (43,000 USD)

Thermal imaging

MEDICAL THERMAL IMAGING Can Detect Many Diseases And Disorders In Their Early Stages

Applications

Moisture Behind Drywall

Thermal imaging of volcanoes

Passive activity

Remote sensing of fumarole temps.

Effusive activity

- Characteristics of dome growth mechanism of emplacement
- Estimation of effusion rate

Explosive activity

- Characteristics depth of source, ash contents
- Air entrainment process
- Real-time monitoring with radiometers

Operation

Emissivity of rocks
 Absorption of atmosphere – relative humidity
 Atmospheric models used

Comparison of object temperature and radiative heat flux. Dotted curve represents temperature/radiative heat flux conversion function. Agrees with Plancks-law over the range of interest (-10 to 200 °C)

Transmissivity of a 5800 m path at 4000 m elevation using the Tropical Atmosphere Model. The contours are interpolated from values calculated using the MODTRAN code

Models of apparent fumarole temperatures

a) Distance versus apparent temperature for theoretical fumaroles. The radiating areas and temperatures of the fumaroles are: 102 m² at 50 °C; 36.1 m² at 100 °C; 19.2 m² at 150 °C; 12.1 m² at 200 °C. Areas correspond to an apparent temperature of ~35 °C at typical atmospheric conditions of 5 °C and 64% relative humidity. 2 regimes. (i) apparent temperatures are controlled by the atmospheric transmissivity; (ii) control is dominated by the pixel size.

b) Effect of atmospheric conditions
on apparent temperature. Contour
lines of apparent temperature show
how it changes with weather
conditions. Error bars represent mean
variation within a 24 hour period.

Stevenson & Varley 2008 JVGR

Data processing – filter for clouds and explosions

Much lower SO₂ flux compared to 1998-9 although similar effusion rate

→ magma arrived with lower volatile contents – volume degassed during explosive events during 2003-4

Infrared – 3 effusion centres, E fracture

NEC camera $1.5 - 3 \mu m$

Calculation of effusion rate

- •Thermal radiance used to calculate effusion rate
- •Comparison with satellite data (AVHRR & MODIS)
- •Also calculated using photos and GIS

Recent eruption – started Jan. 2007

Superimposed thermal and visual images of dome on 9 Feb. 2007

Precursors 6 months before effusion started:

- Increase in B in spring waters
- Seismicity increase in LP events
- Increase in fumarole temperature

Thermal image with white areas having temperatures > 200° C.

Remote sensing of fumaroles

• Decreasing tendency during 2005-2007; 2008 onwards fairly constant

- Negative anomaly prior to 5 June event
- Temperature increases and decreases related to explosions
- Relatively large pixel size and large distance for atmospheric effects but sufficiently sensitive to detect small variations

Mean night time temperatures from Nevado

Increase in fumarole temps.

Decrease occurred when dome made it to the surface

Dome evolution from thermography

Hot spots within small explosion craters

Evidence of circular structure in IR image

05 June 2007

Magma extrusion

11 Nov. 2007 Pixel temps. > 500° C

Growth directed in certain directions – small lobes

Exogenic

Larger dome – sides no longer show high temperature

- Hot central core
- Extrusion on upper surface & sides
- Cooled lower slopes
 - •Talus accumulation
 - •Thermal insulation

2007 – 2011 dome

First stage – exogenic growth 11 Nov. 2007 Pixel temps. > 500° C Various methods used to estimate dome volume

Dome thermal analysis

Hotspot – 321° C Extrusion with rockfall or explosive vent

- Persistent hotspots
- Hot outside upper surface
- Fractures gas flow

Dome cooling – polygons → columnar jointing

26 Dec. 2010

25 February 2010

- Steepening & unloading on W dome side from rockfalls
- New lobe appears

29 March 2010

Final effusive phase: lobe W side

26 December 2010

- Dome is offset to W
- Rockfalls and unloading of this part of dome reestablished growth mechanism
- New lobe formed in 2010
- Dome growth stopped
- Fresh material rockfalls

Infrared images of rockfalls

Estimate volume from heat flux from slope
 Investigate heating of dome before rockfall
 Relationship with explosions

Rockfall quantification

26.05.2010 Rockfall 17:42 – 17:48

- A = 250 m³ • B = 558 m³
- Comparison with seismic signal
- Quantify volumes lost

04 Jan. 2011 - rockfall

Video clip

Explosion monitoring

VarioCAM infrared camera 8 – 13.5 µm

Fumarole temperatures monitored-Looking for long-term trends-Short-term relationship with explosions

Stevenson, J.A., and N. Varley, Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006-2007, *Journal of Volcanology and Geothermal Research, 17*7 (4), 911-924, 2008.

Remote sensing of fumaroles

- Decreasing tendency during 2005-2007; 2008 onwards fairly constant
- Negative anomaly prior to 5 June event
- Temperature increases and decreases related to explosions
- Relatively large pixel size and large distance for atmospheric effects but sufficiently sensitive to detect small variations

Variation in fumarole temperature

Large event of 23 Sept. – prior heating & subsequent cooling over several days

Large event of 27 July – large heating prior to event, then cooling

Explosion 11/08/07

2nd pulse produces acoustic emission but no seismicity detected

2 sources shown in thermal images – one rich in ash, the other poor

nfrared images

- Calculation of heat flux
- Thermal expansion, air entrainment process
- Influence of ash particle fraction

Column processes

10 March 2006 15:54

Isla Socorro - Study of active dome

Crater Lake monitoring

El Chichón, Mexico Gas emission from sides and beneath lake

CO₂ flux survey

- Survey carried out of crater floor
- Emissions related to deep processes
- Controlled by geological structure
- 3 populations on cumulative flux plot

Poás, Costa Rica

Convection within crater lake

Video clip

THERMAL SENSORS - RADIOMETERS

• Permanent real-time monitoring system

Possible to calculate

- Ascent velocity
- Gas flux
- Characterize event

Combined with seismic/infrasound data

• Depth of the explosion

Real time monitoring system

comparison with seismic data

Radiometer data

- Relationship between seismicity and explosion column temperature is not straightforward
- Influenced by
 - Variation in ash-contents difficult to quantify
 - Cooling from air entrainment
 - Source depth
 - Energy release characteristics impulsive or emergent, pulses, multiple vents

Comparing thermal emission of explosion column with seismicity

17/09/07 00:35

03/08/07 12:03

'Cold' gas releases occur but also hot puffs with no seismicity