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Some interesting facts about infrasound: 
 

Infrasound is sound between ~2mHz (acoustic gravity waves) and 20 Hz (threshold 
of hearing). 

Elephants, whales, hippos, rhinos, giraffes, and 
aligators use infrasound to communicate!  Elephants 
can “yell” with 15-35 Hz sounds as loud as 117 dB, 

which can be “heard” tens of kilometers away! 

A resonant frequency of the eyeball is at 18 
Hz and some ghost sightings have been 

attributed to excitation of the eye by sounds! 

Military has explored infrasound “weapons”.  Nazi 
rallies played infrasound to stir up agitation amongst 

the crowds.  Dr. Gavreau during the cold war 
developed infrasonic “whistles” that were capable of 

inducing nausea. 

Volcanoes produce prodigious infrasound, often peaked at about 1 Hz. 



Infrasound: The Good News  
 

•  Sound waves in atmosphere come in only one elastic flavor (compressional waves)  

•  Intrinsic attenuation of infrasound is very low; infrasound propagates far 

•  Structure of the atmosphere is relatively homogeneous giving rise to (relatively) 
predictable propagation paths at distances 

•  Infrasound is typically measured in Pa and can be adequately recorded with low-
cost low-frequency sensitive microphones. 
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And now the bad news: 

•  Structure of atmosphere changes and is dependant upon 
winds and temperatures. 

  
 Solution: Put microphones local to the source  

•  Infrasound recordings are often contaminated by wind 
noise (atmospheric turbulence) and microbaroms (i.e., low 

frequency ocean wave sounds) 

Solutions: Filter out microbaroms and deploy sensors in 
low noise environments.  Also, put microphones local to 

the source 



Proximal versus Distal Infrasound 

• Local infrasound: on flanks of (strato)volcano: < 
~10 km (excess pressure decay as 1/r).  Most active 
volcanoes emanate infrasounds to local distances. 

• Regional infrasound: out to first stratospheric 
and thermospheric refraction: < ~500 km.  
Generally recorded for relatively “large” eruptions. 

• Global infrasound: worldwide (pressure decay as 
1/r1/2).  Only the very largest eruptions, e.g., 
Krakatau. 
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Detections of Sarychev Peak Eruptions in 2009 



Detections of Sarychev Peak Eruptions in 2009 
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Quantifying infrasound “loudness”: 
 
Reduced pressure (radial spreading):  
 
 
 
 
p = recorded excess pressure 
r = source-receiver propagation distance 
rred = reduced distance (1000 m, or 1 km, is often used) 
 
By power (radial spreading):  
 
 
 
 
 
ρc = acoustic impedance (density x sound speed = ~380 m kg s-1 at STP) 
Ω = solid angle area (2πr2 for halfspace). 
 
 
By energy:  
Time-integrated acoustic power gives total acoustic energy.  Energy is also 
easily calculated in the frequency domain. 
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Santiaguito (Guatemala) Tungurahua (Ecuador) Fuego (Guatemala) 

Kilauea (Hawaii) Reventador (Ecuador) Villarrica (Chile) 

Which volcano is “loudest”? 



Santiaguito (Guatemala) - 
pyroclastic-laden eruptions with 
buoyant plumes up to ~1.2 km.  Only 
about 100 Watts of acoustic power is 
associated with time averaged 
Santiaguito eruptive behavior and is 
dominated by explosive events.  Up to 
3000 Watts is generated during 
eruption. 



Reventador (Ecuador) - continuous 
degassing giving rise to ~500-m-high 
vapor plume.  Infrasound is dominated 
by harmonic tremor (‘chugging’), 
which produces consistent levels of 
sound and sound power (~4000 
Watts) until shutting off. 



Halemaumau, Kilauea (Hawaii) - 
striking and long-lived monotonic 
tremor is continuous for months and 
associated with open-vent lava lake 
degassing.  Transient infrasound pulses 
are thought to represent explosions 
instigated by pit crater collapse during 
which ash and blocks are expelled 
several hundred meters.  Long term 
averaged acoustic power is ~300 W. 



Villarrica (Chile) - like Kilauea, 
another monotonic tremor system 
associated with open-vent lava lake 
activity.  Energy is sharply peaked at 
0.77 Hz.  Small Strombolian 
explosions at bottom of crater are 
not associated with infrasound 
transients.  Sustained acoustic power 
is ~6500 W. 
 



Fuego (Guatemala) - short-duration 
Strombolian/Vulcanian explosions 
generate intense, short-lived 
infrasound transients, which are 
relatively broad band in character.  
Almost all acoustic energy is released 
during these short events when 
acoustic power reaches ~100,000 W.  
Long-term averaged acoustic power is 
~2200 W. 
 



Tungurahua (Ecuador) - short-duration 
Vulcanian explosions ejecting ballistics 
to ~2 km generate intense, short-lived 
infrasound transients, which are 
confined to frequencies below about 5 
Hz.  Peak acoustic power is as great as 
10 MWatts (10,000,000 Watts) and 
time-averaged power is more than 
100,000 W. 
 



Amplitudes and energies of 
some volcanic eruptions 



Excess pressure @ 1000 km; -60 dB 
(assuming 1/r pressure decay) 

Estimated excess pressure @ 1 km 
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Lighthill’s Acoustic Monopole 
Source (assuming compact source 

and linear wave propagation) 

Where p(r,t) is the excess pressure (in Pa) and Q is the source strength, 
or density x “volumetric acceleration” (in kg/s2) of the atmosphere 
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p r,t( ) =
Q t − r c( )
2π r

Q(t) is VOLUMETRIC 
ACCELERATION OF 
EXPANDING SURFACE 





RAW INFRASOUND 
(RECORDED AT ~300 m 
FROM VENT) 

VOLUMETRIC (i.e., MASS FLUX) 
RESPONSIBLE FOR SOUND 
(ASSUMING LINEAR 
ACOUSTIC SOURCE) 

BULK GAS OUTFLUX 
(BUBBLE REACHES ~10 
METER RADIUS AFTER 
ABOUT 0.5 SECONDS) 
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Erebus infrasound example… converting raw infrasound to 
volumetric flux and then bulk gas outflux 
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Vent dimension = ~200 m diameter 

Event #1: occurring Jan 002 at 14:16:46 
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Villarrica 





Villarrica 
Signal x 240 

RMS pressure at crater rim = ~20 Pa 

Peak frequency 
= 0.65 Hz 

1) Villarrica infrasound is “loud” 
   - 20 Pa rms (120 dB) at crater rim 
   - 0.2 Pa rms (80 dB) at 8 km 
   - detectable out to at least 50 km  
      [Barrientos et al., 2009] 

2) Is continuous 
   Similar observations of infrasonic 
tremor made during campaigns in 2002, 
2004, 2009, 2010 [Johnson et al., 2004; 
Ripepe et al., 2010; Goto and Johnson, 
2011]. 

3) Has peaked spectral character 
   - Monotonic varies between 0.6 and 0.8 Hz 
   - Tremor is NOT harmonic 
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Villarrica as a Helmholtz Resonator"
(short pipe frequency approximation)"

= 
V=90,000 m3 c = 515 m/s 

€ 

f =
c
2π

π r
1.7V

Goto, A., and J. B. Johnson (2011), Monotonic infrasound and Helmholtz 
resonance at Volcan Villarrica (Chile), Geophys. Res. Lett., 38(L06301)."

freq (f) = 0.65 Hz  



r = 60 m 

~120 m
 

Villarrica as a Helmholtz Resonator"
(short pipe frequency approximation)"

= 

= 

V=350,000 m3 

c = 330 m/s 
€ 

f =
c
2π

π r
1.7V

Goto, A., and J. B. Johnson (2011), Monotonic infrasound and Helmholtz 
resonance at Volcan Villarrica (Chile), Geophys. Res. Lett., 38(L06301)."

freq (f) = 0.65 Hz  
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Infrasound (low frequency acoustic waves) 
propagate out of the vent then through the 

atmosphere to the microphone. 
 

Seismicity (body and surface waves) may 
originate from a diffuse zone (in conduit 
and elsewhere) and may be significantly 

filtered (scattered and attenuated) within 
the volcanic edifice. 

Seismo-acoustic datasets: Nick and John 
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Electret 
condenser 
elements 

Pro – nice signal-
to-noise. 

Pro – cheap.. 
One dollar a 

piece! 

Con – frequency 
response rolls off 

in zone of 
interest 

Types of Infrasonic 
Microphones 

Microelectromechanical 
(MEMS) pressure transducer 

Pro – response is linear down 
to DC. 

Pro – relatively cheap - $100 a 
piece 

Con – doesn’t filter out 
barometric pressure 

fluctuations 

Con – Inferior signal-to-noise 

Microbarometer 
(MB2000) 

Pro – Flat response 

Pro – very low noise 

Con – pricey (~$10,000) 

Con – difficult to manage 
for field deployments 
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ΔP→ excess pressure(measured)
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ΔP = PA − PV
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ΔP→ excess pressure(measured)
PA → ambient atmospheric+ sound pressure
PV → pressureinvolume ≈ atmospheric pressure
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PV → pressureinvolume ≈ atmospheric pressure
Pi → initial pressureat time zero
P0 → ambient pressure
c→ gasconstan t
r→ radiusof capillary tube(~ 50 ×10−6m)
l→ capillary tube length (~ 1×10−2m)
V → reservoirvolume (~ 1×10−6m3)
t→ time
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Modeled waveforms at DOM and CAL  
have excessive amplitudes 

 
 Distance  

Event #1 
psyn/pobs  

Event #2 
psyn/pobs 

CAS 3.3 km 0.88 0.93 

DOM 1.0 km 2.1 3.33 

CAL 0.5 km 6.3 6.8 

Possible explanations: 
• Topographic shadowing 
• Atmospheric focusing 
• Near-source anelastic propagation not considered 
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Classic Helmholtz resonance: 
 
 
 
 
 
 
f is resonance frequency = ~0.8 Hz 
c is sound velocity = 515 m/s (Fee et al., 2010) 
A is pipe cross sectional area = ~75 m2 
r is skylight radius (4-5 m) 
L is pipe length = 3 m (?) 
V is cavity volume (unknown)  
D = diameter of cavity volume = 60-70 m 
 
Solving for volume: 
 
 
 
 
 
 
V = 260,000 m3 and H = ~80 m 
 


