Remote Sensing of Volcanic Gas (mostly SO₂) Emissions

-120 140 **Simon Carn** Contributors/collaborators: N.A. Krotkov, K. Yang, A.J. Prata, A.J. Krueger, W.I. Rose

Ascent and degassing of magma

Volcanic gas compositions

	Nyiragongo	Kilauea*	Merapi*	Etna*
mol%	(DR Congo)	(Hawaii)	(Indonesia)	(Sicily)
	RIFT	HOTSPOT	SUBDUCTION	SUBDUCTION
H ₂ O	70	37	91	48
CO ₂	24	49	5	20
SO ₂	5	12	1	31
СО	1	2	0.1	0.4
HCI	0.3	0.08	0.6	-
HF	0.1	-	0.04	-

Trace constituents: CH₄, N₂, BrO, Zn, Cu, Hg, Au, As, Re, He, Ne, Ar....

*Symonds et al. [1994]

Volatile solubility in magma

Temperature and pressure effects on volcanic gas species

Pre-eruptive volcanic SO₂ degassing

• Increase in SO₂ emissions prior to a major eruption

• Reduced SO₂ emissions prior to eruptions have also been observed

Changes in gas ratios prior to eruptions

Figure 2. A: Time evolution of CO_2/SO_2 molar ratios in Etna central crater's plume. Right axis shows estimated pressures (in MPa) evaluated by combining volcanic gas data with model results. Timing of 2004–2005 and 2006 eruptions are also shown. B: Detail of June–July 2006 period. Gray dots refer to composition of plume released at eruptive vent (right scale). LT—local time. C: Detail of the October–November 2006 period. Dark gray bars indicate timing of Strombolian events 2–9 that occurred at south-east summit crater (SEC).

```
[Aiuppa et al., Geology, 2007]
```


Motivation for volcanic SO₂ measurements

- SO₂ is the most abundant gas in volcanic emissions that can be easily measured using remote sensing techniques
 - Low background concentrations (cf. H_2O , CO_2)
 - No other major sources above the planetary boundary layer (PBL)
 - Well-characterized spectral absorption bands (UV, IR, microwave)
- Released from magma at high temperature and low pressure
 - Can indicate fresh magma rising within a volcanic system
 - Signature of magmatic eruptions with potential for high altitude eruption columns
 - H₂S (hydrogen sulfide) is the more stable sulfur species at high pressures and low temperatures (e.g., fumarole fields)
- Environmental, health and climate impacts (sulfate aerosol)

Temperature, pressure and scrubbing effects on volcanic gases

In-situ gas monitoring techniques (ground-based)

Autonomous monitoring at Mayon (Philippines) F. Schwandner, EOS, Singapore

- Auticas Auticas Auticas Autocas Aut
- Direct gas sampling: complete chemical and isotopic composition
- Hazardous, corrosive environment, low temporal resolution
- MultiGAS sensor packages: SO₂, CO₂, H₂S, H₂O, CO gas ratios
- Autonomous, telemetered networks

Electromagnetic spectrum – SO₂ absorption

Volcanic SO₂ flux measurements via UV spectroscopy

Figure 9. NOVAC Version I instrument installed at San Cristóbal volcano, Nicaragua.

- - Path B

300

360

Figure 5. (left) The speed of the plume can be determined by collecting two time series of column data, one farther upwind than the other. (right) Measurement of the speed of the SO₂ plume from San Cristóbal volcano, Nicaragua [Galle et al., 2006].

- Mainstay of volcanic gas monitoring since 1970s
- UV Differential Optical Absorption Spectroscopy (DOAS)
- Yields emission rates of SO₂ (also BrO, NO₂, CIO)

Ultraviolet imaging cameras

Fuego (Guatemala); Nadeau et al., GRL, 2011

- High temporal resolution (~1 Hz) SO₂ emission data – comparable to other geophysical data (e.g., seismic)
- Plume dynamics and wind speed
- UV spectroscopic data required for corrections
- Plume tomography with multiple cameras

Mori and Burton, 2006; *Bluth et al.*, 2007; *Dalton et al.*, 2009; *Kern et al.*, 2010; Nadeau *et al.*, 2011

Thermal Infrared imaging cameras

Karymsky (Kamchatka)

Courtesy Fred Prata and David Fee

SO₂ and ash detection
Day/night operation
~50 Hz sampling

Fourier-Transform Infrared (FTIR) spectroscopy

helicopter Spectrometer Newtonian telescope a) Degassing summit vent b) Degassing summit vent

• Simultaneous quantification of multiple IR-active volcanic gases (H_2O , CO_2 , SO_2 , CO, HCI, HF, OCS)

- High temporal resolution gas ratios
- Volatile solubility data needed to interpret FTIR measurements (F/Cl \ge H₂O > SO₂ > CO₂)

Autonomous FTIR deployed at Stromboli (INGV)

Volcanic gas monitoring techniques

Technique	Gases measured	Hazard	Cost	Frequency
Direct sampling	Total gas composition	High	Low	Low
In-situ sensors	SO ₂ , H ₂ S, CO ₂ , H ₂ O, CO	High	Low	High
COSPEC	SO ₂	Moderate	\$10k	≥ Minutes
Mini-DOAS	SO ₂ , BrO, NO ₂ , CIO	Moderate	\$10k	1 Hz
FTIR	SO ₂ , CO ₂ , H ₂ O, HCI, HF	Moderate	\$40k	1 Hz
UV camera	SO ₂	Low-Mod	\$20k	>1 Hz
IR camera	SO ₂	Low-Mod	\$20k	Seconds
Satellites	SO ₂ , HCl (strat.), CO ₂ ?	None	Free*	≥15 minutes

*Not including satellite launch

• In addition, variation in spatial coverage and atmospheric interference

Volcanic SO₂ clouds measured by TOMS

An unprecedented era of satellite SO₂ measurements

Up to ~15 daily overpasses by ultraviolet (UV) and infrared (IR) sensors

Ozone Monitoring Instrument (OMI)

- UV/Visible sensor
- On NASA/Aura satellite (polar orbit)
- Launched July 2004
- Daily contiguous global coverage (until late 2008)
- 13 x 24 km nadir pixel
- Overpass at 1:30-2:00 pm local
- Measures SO₂ total column (plus other gases and aerosols)
- Data publicly available and free

 Near real-time (NRT) OMI SO₂ data produced within 3 hours of satellite overpass (http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html)

Create the Future

Satellite instruments - UV

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?	
Total Ozone Mapping Spectrometer (TOMS)	Nimbus-7, Meteor-3, ADEOS, Earth Probe	Nov 78 – Dec 94 Jul 96 – Dec 2005	Yes	
Global Ozone Monitoring Experiment (GOME)	European Remote Sensing Satellite (ERS-2)	July 95 – present	No	
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)	European Environmental Satellite (Envisat-1)	Sept 03 – Apr 2012	No	
Ozone Monitoring Instrument (OMI)	NASA EOS Aura	Sept 2004 – present	Yes (until late 2008)	
Global Ozone Monitoring Experiment-2 (GOME-2)	MetOp A, B, C	Oct 2006 - present	No	
Ozone Mapping and Profiler Suite (OMPS)	National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP)	Apr 2012 - present	Yes	

Operational SO₂ data products

Satellite instruments – Microwave & IR

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?	
Microwave Limb Sounder (MLS)	Upper Atmosphere Research Satellite (UARS), EOS Aura	1991 – 1994 (UARS) 2004 – (EOS Aura)	No	
High Resolution Infrared Radiation Sounder (HIRS , HIRS/2)	TIROS-N, NOAA-6-14	Oct 78 – present	Yes (day/night)	
Moderate Resolution Imaging Spectroradiometer (MODIS)	EOS Terra, Aqua	Feb 2000 –	Yes (day/night)	
Advanced Spaceborne Thermal Emission & Reflection Radiometer (ASTER)	EOS Terra	Feb 2000 – (request only)	No	
Atmospheric Infrared Sounder (AIRS) EOS Aqua		Sept 2002 –	No	
Spinning Enhanced Visible and Infrared Imager (SEVIRI)	Meteosat Second Generation (MSG)	2004 —	No	
Infrared Atmospheric Sounding Interferometer (IASI)	MetOp A, B, C	Oct 2006 -	No	

Beer-Bouguer-Lambert (Beer's) Law

For a gaseous absorber, the absorption coefficient (β) is written as the product of an absorption cross-section (σ , cm²) and the number density of absorbers (N, molecules cm⁻³):

- Beer's Law applies to direct beam only
- Deviations from Beer's Law occur at high concentrations

UV SO₂ and O₃ absorption spectra and instrument bands

IR-active trace gases and instrument channels

Differential Optical Absorption Spectroscopy (DOAS)

Measured UV-visible spectra contain overlapping structures due to the solar spectrum (Fraunhofer lines), elastic scattering, trace gas absorption, aerosol absorption and the Ring effect (inelastic Raman scattering)

Absorption cross-sections of trace gases in the 200-700 nm wavelength range

• Alternative technique: forward modeling of UV radiances with a radiative transfer model, and comparison with observations

UV backscatter measurements

SO₂ column amount measurements

1 Dobson Unit (DU) = 1 Milli Atm cm 1 DU = 0.01 mm thickness at STP e.g. 800 DU = 8 mm thick layer 1 DU = 10 ppmm at STP

• Satellites provide measurements of 'column amount' or 'total column' SO₂

- US units: Dobson Unit (DU)
- 1 DU = 2.69×10¹⁶ molecules cm⁻² = 0.0285 g m⁻² SO₂
- European units: molecules cm⁻²
- *Milli atm cm* also used (same as DU)
- Typical values in volcanic clouds
 - Fresh eruption cloud: 100s 1000+ DU
 - Passive degassing: <20 DU
 - Measured column amount depends on spatial resolution of sensor
 - Can be converted to mass or concentration (if cloud thickness is known)
- Emission rate not directly measured

Effect of volcanic plume altitude on SO₂ retrievals

- Knowledge of SO₂ cloud altitude is critical for accurate SO₂ retrieval
- Satellite sensitivity increases with altitude in the troposphere

[Krotkov et al., IEEE TGRS, 2006; Yang et al., JGR, 2007]

Relative sensitivity of UV and IR measurements

Courtesy of L. Clarisse, ULB

Prata and Bernardo, 2007

• IR channels at ~4 μ m and ~8.6 μ m can detect lower tropospheric SO₂

UV instrument SO₂ sensitivity

Instrument	Footprint area (km²)	<mark>Noise (DU)</mark> 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ		
		Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km	
EP TOMS	1521 (39×39)	3.5	7	3900	7800	
GOME	12800 (40×320)	0.2	0.4	3600	0 7100	
SCIAMACHY	1800 (30×60)	0.2	0.4	125	251	
GOME-2	3200 (40x80)	0.2	0.4	460	914	
ОМІ	312 (13×24)	0.2	0.4	43	87	
OMPS	2500 (50×50)	0.2	0.4	350	700	

Instrument	Footprint area (km²)	<mark>Noise (DU)</mark> * 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ		
		Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km	
MODIS	1 (1×1)	9	250	6	174	
ASTER	0.008 (0.09×0.09)	9	250	0.05 1.4		
AIRS	143 (d = 13.5 km)	1	30	100 2986		
SEVIRI	23 (4.8×4.8)	9	250	144	4009	

*Based on *Realmuto* [1999], AGU Geophysical Monograph 116, p101-115 (except AIRS)

The 'sub-pixel' plume problem

 Fraction of satellite IFOV covered by volcanic plume constrains detection of tropospheric SO₂ degassing plumes from space

Global SO₂ monitoring website

pp, COV7, Colima, Nov 2012

Daily OMI SO₂ measurements

http://so2.gsfc.nasa.gov

• Satellites measure column amounts of gases, NOT emission rates

Daily OMI SO₂ measurements for Kilauea

Kilauea plume SO₂ burdens: 2004-2009

Kilauea plume SO₂ burdens: 2008-2009

Reventador (Ecuador) seismicity and OMI SO₂ data

Detailed analyses of SO₂ emissions from volcanic arcs

Carn et al., JVGR, 2008 (Ecuador); Bani et al., JVGR, 2011 (Vanuatu); McCormick et al., G³, 2012 (PNG)

SO₂ flux estimation from satellite data - lifetime

- Satellite 'snapshots' measure SO₂ burden, not flux
- To first order, SO₂ emission rates can be inferred using the SO₂ burden and an estimate of the SO₂ lifetime
- SO₂ lifetime short (hours) at low altitudes and in humid environments
- Few hours in tropical boundary layers

$$Q = \frac{M}{\tau}$$

- Q = SO₂ emission rate (tons/day)
- M = SO₂ burden (tons)
- $\tau = SO_2$ lifetime (days)

SO₂ flux estimation from satellite data - transects

SO₂ flux estimation from satellite data (Turrialba)

• Comparison between Turrialba (Costa Rica) SO₂ emission rates derived from ASTER, OMI and ground-based UV camera [*Campion et al.*, Bull Volc., 2012]

SO₂ flux estimation from satellite data – single pixel

 $Q = \left[\frac{vM}{L}\right]$

 $M = SO_2 \text{ mass in pixel (kg)}$ $v = \text{ wind speed (m s^{-1})}$ L = length of plume (m) $Q = SO_2 \text{ flux (kg s^{-1})}$

• Similar approach used to estimate smoke emissions from fires [*Ichoku and Kaufman*, 2005]

• Note that asymmetry of OMI pixel affects plume detection

[Carn et al., in press]

SO₂ flux detection limits – zonal means (TRM)

• 5 σ noise; 1 m s⁻¹ wind speed; plume parallel to long-axis of pixel

SO₂ flux detection limits – zonal means (TRL)

• 5σ noise; 1 m s⁻¹ wind speed; plume parallel to long-axis of pixel

Most persistent volcanic SO₂ sources (2004-2011; ~2500 days)

			AMĖRYM	[3.0
5	KILAUEA MANAM POPOCATEPETL TURRIALBA	NYIRAGONGO				2.5
10	TUNGURAHUA DUKONO	Volcano Etna	SO ₂ flux (t/d)			
	AOBA HUILA	Bagana	3300		-	2.0 x p
15	RAUNG RABAUL IJEN	Lascar Ruiz	2400	_		 000000000000000000000000000000000
	ANATAHAN UBINAS TENGGEB, CALDEBA	Sakura-jima	1900	-		age
20		Manam	920	-		40 40 1.0
	REVENTADOR GALERAS	Kilauea	800			
25	MIYAKE-JIMA SOUFRIERE_HILLS LANGILA	Masaya	790		-	0.5
20	NAYON YASUR GAMKONOBA	[Andres and K	(asgnoc, 1998]	-		
30	KLIUCHEVSKOL 1000	11	500	2000		0.0
,	Number of days with dete	cted SO ₂ degas	sing	2000		

Monthly average SO₂ – Mexico (April 2005)

Contact: Simon Carn (scarn@mtu.edu) Δ Ø A and a SO₂ column [DU] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Aura/OMI - Average column for 20050401-20050430

Monthly average SO₂ – Mexico (July 2012)

Contact: Simon Carn (scarn@mtu.edu) Δ A SO₂ column [DU] 0.05 0.00 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Aura/OMI - Average column for 20120701-20120731

Daily SO₂ burdens – Mexico (2004-2012)

Advanced OMI SO₂ algorithms

• Large SO₂ columns (>200 DU)

Figure 3. Comparison of ISF and LF SO_2 columns in the Sierra Negra eruption cloud on October 23, 2005. The LF retrievals saturate at about 200 DU in this case.

• SO₂ altitude

Figure 3. (a) SO₂ vertical column and (b) effective altitude maps derived from OMI UV (both UV-1 and UV-2) radiances for the Jebel al Tair volcanic plume at 10:59 UT on October 1, 2007, using the extended ISF algorithm.

[Yang et al., GRL, 2009a, 2009b]

A-Train sensor synergy

Aura/OMI - Aura/MLS: Anatahan (CNMI), April 7, 2005

Aura/OMI - Aqua/AIRS: Sierra Negra (Galapagos) 2005

- Sierra Negra (Galapagos) eruption, October 24, 2005
- OMI-AIRS synergy indicates SO₂ concentrated in the lower troposphere

Kilauea degassing – April 7, 2008

$OMI + AIRS SO_2$: Nabro (June 16, 2011)

2010 Merapi eruption – evolution of SO₂ emissions

Surono et al., JVGR, 2012

- Total SO₂ emission of 0.2-0.3 Tg
- Satellite sensors (OMI, IASI, AIRS) provided key SO₂ observations

Eruption in Zubair archipelago, Yemen – Dec 2011

Ozone Mapper Profiler Suite (OMPS) SO₂ data

OMI Etna eruption, April 2012

OMPS

- OMPS launched on Suomi NPP satellite in October 2011
- OMPS spatial resolution currently 50×50 km up to 10×10 km possible
- Impacts measurements of volcanic degassing

Remote sensing of H₂S emissions

May be a significant component of total S budget at some volcanoes [Aiuppa et al., 2005]

- Mid-UV absorption bands require active source
- IR absorption bands are very weak, but can be detected from space [IASI; *Clarisse et al.*, 2011]
- USGS airborne in-situ volcanic plume surveys (H₂S, CO₂)

Detection of HCI in volcanic clouds from space

Create the Future

- * HCI only detected in May 6 eruption cloud
 - Maximum HCI vmr of ~2 ppbv at 146 hPa
- [∗] SO₂/HCI (mass) = ~30
 - HCI mass loading = ~100 tons

GOSAT: Measuring CO₂ from space

- Japanese Greenhouse Gas Observing Satellite (GOSAT)
 - Launched January 2009; polar orbit with 1300 LECT
 - Fourier Transform Spectrometer (FTS) and Cloud-Aerosol Imager (CAI)
 - TANSO-FTS sensor measures CO_2 and CH_4 columns and profiles in SWIR/TIR
 - 0.2 cm⁻¹ spectral resolution, 10.5 km diameter FOV
 - 56,000 observation points over land; sunglint obs over oceans
 - Special observation 'stare' mode -150 -120
 - ppm-level sensitivity to changes in CO₂ column
 - Evaluation of GOSAT data for volcanic CO₂ detection underway (uncalibrated data)
 - Special observations made over volcanic vents

30

[deg.]

Longitude

60

90

120

180

150

GOSAT CO₂ special observations – Popocatepetl (Mexico)

• Space-based volcanic CO_2 observations will improve with the Orbiting Carbon Observatory 2 (OCO-2) after launch in 2014 (?)

Summary

- Numerous satellite sensors now provide SO₂ measurements
- Some have standard SO₂ products, others require application of retrieval algorithms to yield quantitative SO₂ data
- Aura/OMI is an economical and effective tool for monitoring volcanic SO₂ degassing on a regional or local (single volcano) scale
- OMI's high SO₂ sensitivity and global coverage allows detection of nearly all significant volcanic eruption clouds, assisting aviation hazard mitigation and improving our understanding of the atmospheric impacts of volcanism
- Detection of tropospheric SO₂ plumes by OMI depends on several factors, hence the lower detection limit in terms of SO₂ flux is variable (with latitude, vent altitude etc.)
- Altitude sensitivity must be considered when evaluating satellite SO₂ data
- New satellite constellations (A-Train) provide opportunities for sensor synergy and '3D' analysis of volcanic clouds
- Many datasets are now available online in near-real time

